mirror of
https://github.com/italicsjenga/agb.git
synced 2024-12-24 00:31:34 +11:00
Fix tests
This commit is contained in:
parent
508f33facd
commit
174517fbb1
|
@ -210,7 +210,7 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
|
||||||
self.0
|
self.0
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn int(&self) -> I {
|
pub fn trunc(&self) -> I {
|
||||||
let fractional_part = self.0 & ((I::one() << N) - I::one());
|
let fractional_part = self.0 & ((I::one() << N) - I::one());
|
||||||
let self_as_int = self.0 >> N;
|
let self_as_int = self.0 >> N;
|
||||||
|
|
||||||
|
@ -275,16 +275,16 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_numbers(_gba: &mut super::Gba) {
|
fn test_numbers(_gba: &mut super::Gba) {
|
||||||
// test addition
|
// test addition
|
||||||
let n: Num<8> = 1.into();
|
let n: Num<i32, 8> = 1.into();
|
||||||
assert_eq!(n + 2, 3.into(), "testing that 1 + 2 == 3");
|
assert_eq!(n + 2, 3.into(), "testing that 1 + 2 == 3");
|
||||||
|
|
||||||
// test multiplication
|
// test multiplication
|
||||||
let n: Num<8> = 5.into();
|
let n: Num<i32, 8> = 5.into();
|
||||||
assert_eq!(n * 3, 15.into(), "testing that 5 * 3 == 15");
|
assert_eq!(n * 3, 15.into(), "testing that 5 * 3 == 15");
|
||||||
|
|
||||||
// test division
|
// test division
|
||||||
let n: Num<8> = 30.into();
|
let n: Num<i32, 8> = 30.into();
|
||||||
let p: Num<8> = 3.into();
|
let p: Num<i32, 8> = 3.into();
|
||||||
assert_eq!(n / 20, p / 2, "testing that 30 / 20 == 3 / 2");
|
assert_eq!(n / 20, p / 2, "testing that 30 / 20 == 3 / 2");
|
||||||
|
|
||||||
assert_ne!(n, p, "testing that 30 != 3");
|
assert_ne!(n, p, "testing that 30 != 3");
|
||||||
|
@ -292,20 +292,20 @@ fn test_numbers(_gba: &mut super::Gba) {
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_division_by_one(_gba: &mut super::Gba) {
|
fn test_division_by_one(_gba: &mut super::Gba) {
|
||||||
let one: Num<8> = 1.into();
|
let one: Num<i32, 8> = 1.into();
|
||||||
|
|
||||||
for i in -40..40 {
|
for i in -40..40 {
|
||||||
let n: Num<8> = i.into();
|
let n: Num<i32, 8> = i.into();
|
||||||
assert_eq!(n / one, n);
|
assert_eq!(n / one, n);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_division_and_multiplication_by_16(_gba: &mut super::Gba) {
|
fn test_division_and_multiplication_by_16(_gba: &mut super::Gba) {
|
||||||
let sixteen: Num<8> = 16.into();
|
let sixteen: Num<i32, 8> = 16.into();
|
||||||
|
|
||||||
for i in -40..40 {
|
for i in -40..40 {
|
||||||
let n: Num<8> = i.into();
|
let n: Num<i32, 8> = i.into();
|
||||||
let m = n / sixteen;
|
let m = n / sixteen;
|
||||||
|
|
||||||
assert_eq!(m * sixteen, n);
|
assert_eq!(m * sixteen, n);
|
||||||
|
@ -314,12 +314,12 @@ fn test_division_and_multiplication_by_16(_gba: &mut super::Gba) {
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_division_by_2_and_15(_gba: &mut super::Gba) {
|
fn test_division_by_2_and_15(_gba: &mut super::Gba) {
|
||||||
let two: Num<8> = 2.into();
|
let two: Num<i32, 8> = 2.into();
|
||||||
let fifteen: Num<8> = 15.into();
|
let fifteen: Num<i32, 8> = 15.into();
|
||||||
let thirty: Num<8> = 30.into();
|
let thirty: Num<i32, 8> = 30.into();
|
||||||
|
|
||||||
for i in -128..128 {
|
for i in -128..128 {
|
||||||
let n: Num<8> = i.into();
|
let n: Num<i32, 8> = i.into();
|
||||||
|
|
||||||
assert_eq!(n / two / fifteen, n / thirty);
|
assert_eq!(n / two / fifteen, n / thirty);
|
||||||
assert_eq!(n / fifteen / two, n / thirty);
|
assert_eq!(n / fifteen / two, n / thirty);
|
||||||
|
@ -328,8 +328,8 @@ fn test_division_by_2_and_15(_gba: &mut super::Gba) {
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_change_base(_gba: &mut super::Gba) {
|
fn test_change_base(_gba: &mut super::Gba) {
|
||||||
let two: Num<9> = 2.into();
|
let two: Num<i32, 9> = 2.into();
|
||||||
let three: Num<4> = 3.into();
|
let three: Num<i32, 4> = 3.into();
|
||||||
|
|
||||||
assert_eq!(two + change_base(three), 5.into());
|
assert_eq!(two + change_base(three), 5.into());
|
||||||
assert_eq!(three + change_base(two), 5.into());
|
assert_eq!(three + change_base(two), 5.into());
|
||||||
|
@ -344,7 +344,7 @@ fn test_rem_returns_sensible_values_for_integers(_gba: &mut super::Gba) {
|
||||||
}
|
}
|
||||||
|
|
||||||
let i_rem_j_normally = i % j;
|
let i_rem_j_normally = i % j;
|
||||||
let i_fixnum: Num<8> = i.into();
|
let i_fixnum: Num<i32, 8> = i.into();
|
||||||
|
|
||||||
assert_eq!(i_fixnum % j, i_rem_j_normally.into());
|
assert_eq!(i_fixnum % j, i_rem_j_normally.into());
|
||||||
}
|
}
|
||||||
|
@ -353,7 +353,7 @@ fn test_rem_returns_sensible_values_for_integers(_gba: &mut super::Gba) {
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
|
fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
|
||||||
let one: Num<8> = 1.into();
|
let one: Num<i32, 8> = 1.into();
|
||||||
let third = one / 3;
|
let third = one / 3;
|
||||||
|
|
||||||
for i in -50..50 {
|
for i in -50..50 {
|
||||||
|
@ -363,10 +363,10 @@ fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// full calculation in the normal way
|
// full calculation in the normal way
|
||||||
let x: Num<8> = third + i;
|
let x: Num<i32, 8> = third + i;
|
||||||
let y: Num<8> = j.into();
|
let y: Num<i32, 8> = j.into();
|
||||||
|
|
||||||
let truncated_division: Num<8> = (x / y).trunc().into();
|
let truncated_division: Num<i32, 8> = (x / y).trunc().into();
|
||||||
|
|
||||||
let remainder = x - truncated_division * y;
|
let remainder = x - truncated_division * y;
|
||||||
|
|
||||||
|
@ -377,7 +377,7 @@ fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_rem_euclid_is_always_positive_and_sensible(_gba: &mut super::Gba) {
|
fn test_rem_euclid_is_always_positive_and_sensible(_gba: &mut super::Gba) {
|
||||||
let one: Num<8> = 1.into();
|
let one: Num<i32, 8> = 1.into();
|
||||||
let third = one / 3;
|
let third = one / 3;
|
||||||
|
|
||||||
for i in -50..50 {
|
for i in -50..50 {
|
||||||
|
@ -386,13 +386,8 @@ fn test_rem_euclid_is_always_positive_and_sensible(_gba: &mut super::Gba) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// full calculation in the normal way
|
let x: Num<i32, 8> = third + i;
|
||||||
let x: Num<8> = third + i;
|
let y: Num<i32, 8> = j.into();
|
||||||
let y: Num<8> = j.into();
|
|
||||||
|
|
||||||
let truncated_division: Num<8> = (x / y).trunc().into();
|
|
||||||
|
|
||||||
let remainder = x - truncated_division * y;
|
|
||||||
|
|
||||||
let rem_euclid = x.rem_euclid(y);
|
let rem_euclid = x.rem_euclid(y);
|
||||||
assert!(rem_euclid > 0.into());
|
assert!(rem_euclid > 0.into());
|
||||||
|
|
Loading…
Reference in a new issue