Merge pull request #274 from corwinkuiper/fixnum-docs

Add docs to fixnum crate
This commit is contained in:
Corwin 2022-08-02 22:49:10 +01:00 committed by GitHub
commit 1ec64afeae
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 294 additions and 15 deletions

View file

@ -8,6 +8,14 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Added
- Support for sprites that are not square.
- Docs for fixed point numbers.
### Changed
- Rect::contains_point now considers points on the boundary to be part of the rectangle.
- Signature of Rect::overlapping_rect changed to return an Option. Returns None if rectangles don't overlap.
### Fixed
- Fixed point sine calculates the sine correctly.
## [0.10.0] - 2022/07/31

View file

@ -1,4 +1,6 @@
#![no_std]
#![deny(missing_docs)]
//! Fixed point number implementation for representing non integers efficiently.
use core::{
cmp::{Eq, Ord, PartialEq, PartialOrd},
@ -10,8 +12,16 @@ use core::{
};
#[doc(hidden)]
/// Used internally by the [num!] macro which should be used instead.
pub use agb_macros::num as num_inner;
/// Can be thought of having the signature `num!(float) -> Num<I, N>`.
/// ```
/// # use agb_fixnum::Num;
/// # use agb_fixnum::num;
/// let n: Num<i32, 8> = num!(0.75);
/// assert_eq!(n, Num::new(3) / 4, "0.75 == 3/4");
/// ```
#[macro_export]
macro_rules! num {
($value:literal) => {{
@ -19,6 +29,8 @@ macro_rules! num {
}};
}
/// A trait for everything required to use as the internal representation of the
/// fixed point number.
pub trait Number:
Sized
+ Copy
@ -37,6 +49,7 @@ pub trait Number:
impl<I: FixedWidthUnsignedInteger, const N: usize> Number for Num<I, N> {}
impl<I: FixedWidthUnsignedInteger> Number for I {}
/// A trait for integers that don't implement unary negation
pub trait FixedWidthUnsignedInteger:
Sized
+ Copy
@ -57,14 +70,20 @@ pub trait FixedWidthUnsignedInteger:
+ Debug
+ Display
{
/// Returns the representation of zero
fn zero() -> Self;
/// Returns the representation of one
fn one() -> Self;
/// Returns the representation of ten
fn ten() -> Self;
/// Converts an i32 to it's own representation, panics on failure
fn from_as_i32(v: i32) -> Self;
}
/// Trait for an integer that includes negation
pub trait FixedWidthSignedInteger: FixedWidthUnsignedInteger + Neg<Output = Self> {
#[must_use]
/// Returns the absolute value of the number
fn fixed_abs(self) -> Self;
}
@ -111,12 +130,14 @@ fixed_width_unsigned_integer_impl!(usize);
fixed_width_signed_integer_impl!(i16);
fixed_width_signed_integer_impl!(i32);
/// A fixed point number represented using `I` with `N` bits of fractional precision
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Num<I: FixedWidthUnsignedInteger, const N: usize>(I);
/// An often convenient representation for the Game Boy Advance using word sized
/// internal representation for maximum efficiency
pub type FixedNum<const N: usize> = Num<i32, N>;
pub type Integer = Num<i32, 0>;
impl<I: FixedWidthUnsignedInteger, const N: usize> From<I> for Num<I, N> {
fn from(value: I) -> Self {
@ -266,6 +287,7 @@ impl<I: FixedWidthSignedInteger, const N: usize> Neg for Num<I, N> {
}
impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
/// Performs the conversion between two integer types and between two different fractional precisions
pub fn change_base<J: FixedWidthUnsignedInteger + From<I>, const M: usize>(self) -> Num<J, M> {
let n: J = self.0.into();
if N < M {
@ -275,19 +297,40 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
}
}
/// A bit for bit conversion from a number to a fixed num
pub fn from_raw(n: I) -> Self {
Num(n)
}
/// The internal representation of the fixed point number
pub fn to_raw(self) -> I {
self.0
}
/// Truncates the fixed point number returning the integral part
/// ```rust
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.67);
/// assert_eq!(n.trunc(), 5);
/// let n: Num<i32, 8> = num!(-5.67);
/// assert_eq!(n.trunc(), -5);
/// ```
pub fn trunc(self) -> I {
self.0 / (I::one() << N)
}
#[must_use]
/// Performs the equivalent to the integer rem_euclid, which is modulo numbering.
/// ```rust
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.67);
/// let r: Num<i32, 8> = num!(4.);
/// assert_eq!(n.rem_euclid(r), num!(1.67));
///
/// let n: Num<i32, 8> = num!(-1.5);
/// let r: Num<i32, 8> = num!(4.);
/// assert_eq!(n.rem_euclid(r), num!(2.5));
/// ```
pub fn rem_euclid(self, rhs: Self) -> Self {
let r = self % rhs;
if r < I::zero().into() {
@ -301,18 +344,41 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
}
}
/// Performs rounding towards negative infinity
/// ```rust
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.67);
/// assert_eq!(n.floor(), 5);
/// let n: Num<i32, 8> = num!(-5.67);
/// assert_eq!(n.floor(), -6);
/// ```
pub fn floor(self) -> I {
self.0 >> N
}
/// Returns the fractional component of a number as it's integer representation
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.5);
/// assert_eq!(n.frac(), 1 << 7);
/// ```
pub fn frac(self) -> I {
self.0 & ((I::one() << N) - I::one())
}
/// Creates an integer represented by a fixed point number
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = Num::new(5);
/// assert_eq!(n.frac(), 0); // no fractional component
/// assert_eq!(n, num!(5.)); // just equals the number 5
/// ```
pub fn new(integral: I) -> Self {
Self(integral << N)
}
#[doc(hidden)]
/// Called by the [num!] macro in order to create a fixed point number
pub fn new_from_parts(num: (i32, i32)) -> Self {
Self(I::from_as_i32(((num.0) << N) + (num.1 >> (30 - N))))
}
@ -320,6 +386,14 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
impl<const N: usize> Num<i32, N> {
#[must_use]
/// Returns the square root of a number, it is calcuated a digit at a time.
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(16.);
/// assert_eq!(n.sqrt(), num!(4.));
/// let n: Num<i32, 8> = num!(2.25);
/// assert_eq!(n.sqrt(), num!(1.5));
/// ```
pub fn sqrt(self) -> Self {
assert_eq!(N % 2, 0, "N must be even to be able to square root");
assert!(self.0 >= 0, "sqrt is only valid for positive numbers");
@ -346,12 +420,33 @@ impl<const N: usize> Num<i32, N> {
impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
#[must_use]
/// Returns the absolute value of a fixed point number
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.5);
/// assert_eq!(n.abs(), num!(5.5));
/// let n: Num<i32, 8> = num!(-5.5);
/// assert_eq!(n.abs(), num!(5.5));
/// ```
pub fn abs(self) -> Self {
Num(self.0.fixed_abs())
}
/// domain of [0, 1].
/// see https://github.com/tarcieri/micromath/blob/24584465b48ff4e87cffb709c7848664db896b4f/src/float/cos.rs#L226
/// Calculates the cosine of a fixed point number with the domain of [0, 1].
/// Uses a [fifth order polynomial](https://github.com/tarcieri/micromath/blob/24584465b48ff4e87cffb709c7848664db896b4f/src/float/cos.rs#L226).
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(0.); // 0 radians
/// assert_eq!(n.cos(), num!(1.));
/// let n: Num<i32, 8> = num!(0.25); // pi / 2 radians
/// assert_eq!(n.cos(), num!(0.));
/// let n: Num<i32, 8> = num!(0.5); // pi radians
/// assert_eq!(n.cos(), num!(-1.));
/// let n: Num<i32, 8> = num!(0.75); // 3pi/2 radians
/// assert_eq!(n.cos(), num!(0.));
/// let n: Num<i32, 8> = num!(1.); // 2 pi radians (whole rotation)
/// assert_eq!(n.cos(), num!(1.));
/// ```
#[must_use]
pub fn cos(self) -> Self {
let one: Self = I::one().into();
@ -368,11 +463,25 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
x
}
/// Calculates the sine of a number with domain of [0, 1].
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(0.); // 0 radians
/// assert_eq!(n.sin(), num!(0.));
/// let n: Num<i32, 8> = num!(0.25); // pi / 2 radians
/// assert_eq!(n.sin(), num!(1.));
/// let n: Num<i32, 8> = num!(0.5); // pi radians
/// assert_eq!(n.sin(), num!(0.));
/// let n: Num<i32, 8> = num!(0.75); // 3pi/2 radians
/// assert_eq!(n.sin(), num!(-1.));
/// let n: Num<i32, 8> = num!(1.); // 2 pi radians (whole rotation)
/// assert_eq!(n.sin(), num!(0.));
/// ```
#[must_use]
pub fn sin(self) -> Self {
let one: Self = I::one().into();
let four: I = 4.into();
(self + one / four).cos()
(self - one / four).cos()
}
}
@ -417,9 +526,12 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Debug for Num<I, N> {
}
}
/// A vector of two points: (x, y) represened by integers or fixed point numbers
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Vector2D<T: Number> {
/// The x coordinate
pub x: T,
/// The y coordinate
pub y: T,
}
@ -505,6 +617,13 @@ impl<T: Number> SubAssign<Self> for Vector2D<T> {
impl<I: FixedWidthUnsignedInteger, const N: usize> Vector2D<Num<I, N>> {
#[must_use]
/// Truncates the x and y coordinate, see [Num::trunc]
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(1.56), num!(-2.2)).into();
/// let v2: Vector2D<i32> = (1, -2).into();
/// assert_eq!(v1.trunc(), v2);
/// ```
pub fn trunc(self) -> Vector2D<I> {
Vector2D {
x: self.x.trunc(),
@ -513,6 +632,13 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Vector2D<Num<I, N>> {
}
#[must_use]
/// Floors the x and y coordnate, see [Num::floor]
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = Vector2D::new(num!(1.56), num!(-2.2));
/// let v2: Vector2D<i32> = (1, -3).into();
/// assert_eq!(v1.floor(), v2);
/// ```
pub fn floor(self) -> Vector2D<I> {
Vector2D {
x: self.x.floor(),
@ -523,24 +649,47 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Vector2D<Num<I, N>> {
impl<const N: usize> Vector2D<Num<i32, N>> {
#[must_use]
/// Calculates the magnitude squared, ie (x*x + y*y)
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert_eq!(v1.magnitude_squared(), 25.into());
/// ```
pub fn magnitude_squared(self) -> Num<i32, N> {
self.x * self.x + self.y * self.y
}
#[must_use]
/// Calculates the manhattan distance, x.abs() + y.abs().
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert_eq!(v1.manhattan_distance(), 7.into());
/// ```
pub fn manhattan_distance(self) -> Num<i32, N> {
self.x.abs() + self.y.abs()
}
#[must_use]
/// Calculates the magnitude by square root
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert_eq!(v1.magnitude(), 5.into());
/// ```
pub fn magnitude(self) -> Num<i32, N> {
self.magnitude_squared().sqrt()
}
// calculates the magnitude of a vector using the alpha max plus beta min
// algorithm https://en.wikipedia.org/wiki/Alpha_max_plus_beta_min_algorithm
// this has a maximum error of less than 4% of the true magnitude, probably
// depending on the size of your fixed point approximation
/// Calculates the magnitude of a vector using the [alpha max plus beta min
/// algorithm](https://en.wikipedia.org/wiki/Alpha_max_plus_beta_min_algorithm)
/// this has a maximum error of less than 4% of the true magnitude, probably
/// depending on the size of your fixed point approximation
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert!(v1.fast_magnitude() > num!(4.9) && v1.fast_magnitude() < num!(5.1));
/// ```
#[must_use]
pub fn fast_magnitude(self) -> Num<i32, N> {
let max = core::cmp::max(self.x, self.y);
@ -550,11 +699,24 @@ impl<const N: usize> Vector2D<Num<i32, N>> {
}
#[must_use]
/// Normalises the vector to magnitude of one by performing a square root,
/// due to fixed point imprecision this magnitude may not be exactly one
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(4.), num!(4.)).into();
/// assert_eq!(v1.normalise().magnitude(), 1.into());
/// ```
pub fn normalise(self) -> Self {
self / self.magnitude()
}
#[must_use]
/// Normalises the vector to magnitude of one using [Vector2D::fast_magnitude].
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(4.), num!(4.)).into();
/// assert_eq!(v1.fast_normalise().magnitude(), 1.into());
/// ```
pub fn fast_normalise(self) -> Self {
self / self.fast_magnitude()
}
@ -567,12 +729,25 @@ impl<T: Number, P: Number + Into<T>> From<(P, P)> for Vector2D<T> {
}
impl<T: Number> Vector2D<T> {
/// Converts the representation of the vector to another type
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<i16> = Vector2D::new(1, 2);
/// let v2: Vector2D<i32> = v1.change_base();
/// ```
pub fn change_base<U: Number + From<T>>(self) -> Vector2D<U> {
(self.x, self.y).into()
}
}
impl<I: FixedWidthSignedInteger, const N: usize> Vector2D<Num<I, N>> {
/// Creates a unit vector from an angle, noting that the domain of the angle
/// is [0, 1], see [Num::cos] and [Num::sin].
/// ```
/// # use agb_fixnum::*;
/// let v: Vector2D<Num<i32, 8>> = Vector2D::new_from_angle(num!(0.0));
/// assert_eq!(v, (num!(1.0), num!(0.0)).into());
/// ```
pub fn new_from_angle(angle: Num<I, N>) -> Self {
Vector2D {
x: angle.cos(),
@ -591,24 +766,61 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> From<Vector2D<I>> for Vector2
}
#[derive(Debug, PartialEq, Eq, Clone)]
/// A rectangle with a position in 2d space and a 2d size
pub struct Rect<T: Number> {
/// The position of the rectangle
pub position: Vector2D<T>,
/// The size of the rectangle
pub size: Vector2D<T>,
}
impl<T: Number> Rect<T> {
#[must_use]
/// Creates a rectangle from it's position and size
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(2,3));
/// assert_eq!(r.position, Vector2D::new(1,1));
/// assert_eq!(r.size, Vector2D::new(2,3));
/// ```
pub fn new(position: Vector2D<T>, size: Vector2D<T>) -> Self {
Rect { position, size }
}
/// Returns true if the rectangle contains the point given, note that the boundary counts as containing the rectangle.
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
/// assert!(r.contains_point(Vector2D::new(1,1)));
/// assert!(r.contains_point(Vector2D::new(2,2)));
/// assert!(r.contains_point(Vector2D::new(3,3)));
/// assert!(r.contains_point(Vector2D::new(4,4)));
///
/// assert!(!r.contains_point(Vector2D::new(0,2)));
/// assert!(!r.contains_point(Vector2D::new(5,2)));
/// assert!(!r.contains_point(Vector2D::new(2,0)));
/// assert!(!r.contains_point(Vector2D::new(2,5)));
/// ```
pub fn contains_point(&self, point: Vector2D<T>) -> bool {
point.x > self.position.x
&& point.x < self.position.x + self.size.x
&& point.y > self.position.y
&& point.y < self.position.y + self.size.y
point.x >= self.position.x
&& point.x <= self.position.x + self.size.x
&& point.y >= self.position.y
&& point.y <= self.position.y + self.size.y
}
/// Returns true if the other rectangle touches or overlaps the first.
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
///
/// assert!(r.touches(r.clone()));
///
/// let r1 = Rect::new(Vector2D::new(2,2), Vector2D::new(3,3));
/// assert!(r.touches(r1));
///
/// let r2 = Rect::new(Vector2D::new(-10,-10), Vector2D::new(3,3));
/// assert!(!r.touches(r2));
/// ```
pub fn touches(&self, other: Rect<T>) -> bool {
self.position.x < other.position.x + other.size.x
&& self.position.x + self.size.x > other.position.x
@ -617,7 +829,28 @@ impl<T: Number> Rect<T> {
}
#[must_use]
pub fn overlapping_rect(&self, other: Rect<T>) -> Self {
/// Returns the rectangle that is the region that the two rectangles have in
/// common, or [None] if they don't overlap
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
/// let r2 = Rect::new(Vector2D::new(2,2), Vector2D::new(3,3));
///
/// assert_eq!(r.overlapping_rect(r2), Some(Rect::new(Vector2D::new(2,2), Vector2D::new(2,2))));
/// ```
///
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
/// let r2 = Rect::new(Vector2D::new(-10,-10), Vector2D::new(3,3));
///
/// assert_eq!(r.overlapping_rect(r2), None);
/// ```
pub fn overlapping_rect(&self, other: Rect<T>) -> Option<Self> {
if !self.touches(other.clone()) {
return None;
}
fn max<E: Number>(x: E, y: E) -> E {
if x > y {
x
@ -650,11 +883,21 @@ impl<T: Number> Rect<T> {
)
.into();
Rect::new(top_left, bottom_right - top_left)
Some(Rect::new(top_left, bottom_right - top_left))
}
}
impl<T: FixedWidthUnsignedInteger> Rect<T> {
/// Iterate over the points in a rectangle in row major order.
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(2,3));
///
/// let expected_points = vec![(1,1), (2,1), (1,2), (2,2), (1,3), (2,3)];
/// let rect_points: Vec<(i32, i32)> = r.iter().collect();
///
/// assert_eq!(rect_points, expected_points);
/// ```
pub fn iter(self) -> impl Iterator<Item = (T, T)> {
let mut x = self.position.x;
let mut y = self.position.y;
@ -676,15 +919,37 @@ impl<T: FixedWidthUnsignedInteger> Rect<T> {
}
impl<T: Number> Vector2D<T> {
/// Created a vector from the given coordinates
/// ```
/// # use agb_fixnum::*;
/// let v = Vector2D::new(1, 2);
/// assert_eq!(v.x, 1);
/// assert_eq!(v.y, 2);
/// ```
pub fn new(x: T, y: T) -> Self {
Vector2D { x, y }
}
/// Returns the tuple of the coorinates
/// ```
/// # use agb_fixnum::*;
/// let v = Vector2D::new(1, 2);
/// assert_eq!(v.get(), (1, 2));
/// ```
pub fn get(self) -> (T, T) {
(self.x, self.y)
}
#[must_use]
/// Calculates the hadamard product of two vectors
/// ```
/// # use agb_fixnum::*;
/// let v1 = Vector2D::new(2, 3);
/// let v2 = Vector2D::new(4, 5);
///
/// let r = v1.hadamard(v2);
/// assert_eq!(r, Vector2D::new(v1.x * v2.x, v1.y * v2.y));
/// ```
pub fn hadamard(self, other: Self) -> Self {
Self {
x: self.x * other.x,
@ -693,6 +958,12 @@ impl<T: Number> Vector2D<T> {
}
#[must_use]
/// Swaps the x and y coordinate
/// ```
/// # use agb_fixnum::*;
/// let v1 = Vector2D::new(2, 3);
/// assert_eq!(v1.swap(), Vector2D::new(3, 2));
/// ```
pub fn swap(self) -> Self {
Self {
x: self.y,

View file

@ -161,7 +161,7 @@ pub mod interrupt;
mod memory_mapped;
/// Implements logging to the mgba emulator.
pub mod mgba;
/// Implementation of fixnums for working with non-integer values.
#[doc(inline)]
pub use agb_fixnum as fixnum;
/// Contains an implementation of a hashmap which suits the gameboy advance's hardware.
pub mod hash_map;