mirror of
https://github.com/italicsjenga/agb.git
synced 2024-12-23 08:11:33 +11:00
use num traits for and implement signed
This commit is contained in:
parent
cddb85df05
commit
57681f1084
|
@ -11,6 +11,7 @@ use core::{
|
|||
Sub, SubAssign,
|
||||
},
|
||||
};
|
||||
use num_traits::Signed;
|
||||
|
||||
#[doc(hidden)]
|
||||
/// Used internally by the [num!] macro which should be used instead.
|
||||
|
@ -32,49 +33,25 @@ macro_rules! num {
|
|||
|
||||
/// A trait for everything required to use as the internal representation of the
|
||||
/// fixed point number.
|
||||
pub trait Number:
|
||||
Sized
|
||||
+ Copy
|
||||
+ PartialOrd
|
||||
+ Ord
|
||||
+ PartialEq
|
||||
+ Eq
|
||||
+ Add<Output = Self>
|
||||
+ Sub<Output = Self>
|
||||
+ Rem<Output = Self>
|
||||
+ Div<Output = Self>
|
||||
+ Mul<Output = Self>
|
||||
{
|
||||
}
|
||||
pub trait Number: Copy + PartialOrd + Ord + num_traits::Num {}
|
||||
|
||||
impl<I: FixedWidthUnsignedInteger, const N: usize> Number for Num<I, N> {}
|
||||
impl<I: FixedWidthUnsignedInteger> Number for I {}
|
||||
|
||||
/// A trait for integers that don't implement unary negation
|
||||
pub trait FixedWidthUnsignedInteger:
|
||||
Sized
|
||||
+ Copy
|
||||
Copy
|
||||
+ PartialOrd
|
||||
+ Ord
|
||||
+ PartialEq
|
||||
+ Eq
|
||||
+ Shl<usize, Output = Self>
|
||||
+ Shr<usize, Output = Self>
|
||||
+ Add<Output = Self>
|
||||
+ Sub<Output = Self>
|
||||
+ Not<Output = Self>
|
||||
+ BitAnd<Output = Self>
|
||||
+ Rem<Output = Self>
|
||||
+ Div<Output = Self>
|
||||
+ Mul<Output = Self>
|
||||
+ From<u8>
|
||||
+ Debug
|
||||
+ Display
|
||||
+ num_traits::Num
|
||||
+ Not<Output = Self>
|
||||
{
|
||||
/// Returns the representation of zero
|
||||
fn zero() -> Self;
|
||||
/// Returns the representation of one
|
||||
fn one() -> Self;
|
||||
/// Returns the representation of ten
|
||||
fn ten() -> Self;
|
||||
/// Converts an i32 to it's own representation, panics on failure
|
||||
|
@ -84,23 +61,13 @@ pub trait FixedWidthUnsignedInteger:
|
|||
}
|
||||
|
||||
/// Trait for an integer that includes negation
|
||||
pub trait FixedWidthSignedInteger: FixedWidthUnsignedInteger + Neg<Output = Self> {
|
||||
#[must_use]
|
||||
/// Returns the absolute value of the number
|
||||
fn fixed_abs(self) -> Self;
|
||||
}
|
||||
pub trait FixedWidthSignedInteger: FixedWidthUnsignedInteger + num_traits::sign::Signed {}
|
||||
|
||||
impl<I: FixedWidthUnsignedInteger + Signed> FixedWidthSignedInteger for I {}
|
||||
|
||||
macro_rules! fixed_width_unsigned_integer_impl {
|
||||
($T: ty, $Upcast: ident) => {
|
||||
impl FixedWidthUnsignedInteger for $T {
|
||||
#[inline(always)]
|
||||
fn zero() -> Self {
|
||||
0
|
||||
}
|
||||
#[inline(always)]
|
||||
fn one() -> Self {
|
||||
1
|
||||
}
|
||||
#[inline(always)]
|
||||
fn ten() -> Self {
|
||||
10
|
||||
|
@ -119,6 +86,8 @@ macro_rules! upcast_multiply_impl {
|
|||
($T: ty, optimised_64_bit) => {
|
||||
#[inline(always)]
|
||||
fn upcast_multiply(a: Self, b: Self, n: usize) -> Self {
|
||||
use num_traits::One;
|
||||
|
||||
let mask = (Self::one() << n).wrapping_sub(1);
|
||||
|
||||
let a_floor = a >> n;
|
||||
|
@ -144,17 +113,6 @@ macro_rules! upcast_multiply_impl {
|
|||
};
|
||||
}
|
||||
|
||||
macro_rules! fixed_width_signed_integer_impl {
|
||||
($T: ty) => {
|
||||
impl FixedWidthSignedInteger for $T {
|
||||
#[inline(always)]
|
||||
fn fixed_abs(self) -> Self {
|
||||
self.abs()
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
fixed_width_unsigned_integer_impl!(u8, u32);
|
||||
fixed_width_unsigned_integer_impl!(i16, i32);
|
||||
fixed_width_unsigned_integer_impl!(u16, u32);
|
||||
|
@ -162,9 +120,6 @@ fixed_width_unsigned_integer_impl!(u16, u32);
|
|||
fixed_width_unsigned_integer_impl!(i32, optimised_64_bit);
|
||||
fixed_width_unsigned_integer_impl!(u32, optimised_64_bit);
|
||||
|
||||
fixed_width_signed_integer_impl!(i16);
|
||||
fixed_width_signed_integer_impl!(i32);
|
||||
|
||||
/// A fixed point number represented using `I` with `N` bits of fractional precision
|
||||
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
||||
#[repr(transparent)]
|
||||
|
@ -546,7 +501,7 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
|
|||
/// assert_eq!(n.abs(), num!(5.5));
|
||||
/// ```
|
||||
pub fn abs(self) -> Self {
|
||||
Num(self.0.fixed_abs())
|
||||
Num(self.0.abs())
|
||||
}
|
||||
|
||||
/// Calculates the cosine of a fixed point number with the domain of [0, 1].
|
||||
|
@ -595,6 +550,28 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<I: FixedWidthSignedInteger, const N: usize> num_traits::sign::Signed for Num<I, N> {
|
||||
fn abs(&self) -> Self {
|
||||
Self::abs(*self)
|
||||
}
|
||||
|
||||
fn abs_sub(&self, other: &Self) -> Self {
|
||||
Self(self.0.abs_sub(&other.0))
|
||||
}
|
||||
|
||||
fn signum(&self) -> Self {
|
||||
Self(self.0.signum())
|
||||
}
|
||||
|
||||
fn is_positive(&self) -> bool {
|
||||
self.0.is_positive()
|
||||
}
|
||||
|
||||
fn is_negative(&self) -> bool {
|
||||
self.0.is_negative()
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: FixedWidthUnsignedInteger, const N: usize> Display for Num<I, N> {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
let mut integral = self.0 >> N;
|
||||
|
@ -759,12 +736,12 @@ impl<T: Number> SubAssign<Self> for Vector2D<T> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<T: FixedWidthSignedInteger> Vector2D<T> {
|
||||
impl<T: Number + Signed> Vector2D<T> {
|
||||
/// Calculates the absolute value of the x and y components.
|
||||
pub fn abs(self) -> Self {
|
||||
Self {
|
||||
x: self.x.fixed_abs(),
|
||||
y: self.y.fixed_abs(),
|
||||
x: self.x.abs(),
|
||||
y: self.y.abs(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1083,13 +1060,13 @@ impl<T: FixedWidthUnsignedInteger> Rect<T> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<T: FixedWidthSignedInteger> Rect<T> {
|
||||
impl<T: Number + Signed> Rect<T> {
|
||||
/// Makes a rectangle that represents the equivalent location in space but with a positive size
|
||||
pub fn abs(self) -> Self {
|
||||
Self {
|
||||
position: (
|
||||
self.position.x + self.size.x.min(0.into()),
|
||||
self.position.y + self.size.y.min(0.into()),
|
||||
self.position.x + self.size.x.min(T::zero()),
|
||||
self.position.y + self.size.y.min(T::zero()),
|
||||
)
|
||||
.into(),
|
||||
size: self.size.abs(),
|
||||
|
|
Loading…
Reference in a new issue