mirror of
https://github.com/italicsjenga/agb.git
synced 2024-12-23 08:11:33 +11:00
Add dot and cross product (#695)
Docs: ![image](https://github.com/agbrs/agb/assets/8143879/88f10d03-27c6-43b3-baf3-b79469ed7a12) - [x] Changelog updated
This commit is contained in:
commit
5a80acd501
|
@ -7,6 +7,10 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||||
|
|
||||||
## [Unreleased]
|
## [Unreleased]
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Added `dot` and `cross` product methods for `Vector2D`.
|
||||||
|
|
||||||
### Fixed
|
### Fixed
|
||||||
|
|
||||||
- Fixed an issue with agb tracker where XM files with linear frequencies were playing the wrong notes
|
- Fixed an issue with agb tracker where XM files with linear frequencies were playing the wrong notes
|
||||||
|
|
|
@ -1113,6 +1113,48 @@ impl<T: Number> Vector2D<T> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[doc(alias = "scalar_product")]
|
||||||
|
/// Calculates the dot product / scalar product of two vectors
|
||||||
|
/// ```
|
||||||
|
/// use agb_fixnum::Vector2D;
|
||||||
|
///
|
||||||
|
/// let v1 = Vector2D::new(3, 5);
|
||||||
|
/// let v2 = Vector2D::new(7, 11);
|
||||||
|
///
|
||||||
|
/// let dot = v1.dot(v2);
|
||||||
|
/// assert_eq!(dot, 76);
|
||||||
|
/// ```
|
||||||
|
/// The dot product for vectors *A* and *B* is defined as
|
||||||
|
/// > *A*<sub>*x*</sub> × *B*<sub>*x*</sub> + *A*<sub>*y*</sub> × *B*<sub>*y*</sub>.
|
||||||
|
pub fn dot(self, b: Self) -> T {
|
||||||
|
self.x * b.x + self.y * b.y
|
||||||
|
}
|
||||||
|
|
||||||
|
#[doc(alias = "vector_product")]
|
||||||
|
/// Calculates the *z* component of the cross product / vector product of two
|
||||||
|
/// vectors
|
||||||
|
/// ```
|
||||||
|
/// use agb_fixnum::Vector2D;
|
||||||
|
///
|
||||||
|
/// let v1 = Vector2D::new(3, 5);
|
||||||
|
/// let v2 = Vector2D::new(7, 11);
|
||||||
|
///
|
||||||
|
/// let dot = v1.cross(v2);
|
||||||
|
/// assert_eq!(dot, -2);
|
||||||
|
/// ```
|
||||||
|
/// The *z* component cross product for vectors *A* and *B* is defined as
|
||||||
|
/// > *A*<sub>*x*</sub> × *B*<sub>*y*</sub> - *A*<sub>*y*</sub> × *B*<sub>*x*</sub>.
|
||||||
|
///
|
||||||
|
///
|
||||||
|
/// Normally the cross product / vector product is itself a vector. This is
|
||||||
|
/// in the 3D case where the cross product of two vectors is perpendicular
|
||||||
|
/// to both vectors. The only vector perpendicular to two 2D vectors is
|
||||||
|
/// purely in the *z* direction, hence why this method only returns that
|
||||||
|
/// component. The *x* and *y* components are always zero.
|
||||||
|
pub fn cross(self, b: Self) -> T {
|
||||||
|
self.x * b.y - self.y * b.x
|
||||||
|
}
|
||||||
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
/// Swaps the x and y coordinate
|
/// Swaps the x and y coordinate
|
||||||
/// ```
|
/// ```
|
||||||
|
|
Loading…
Reference in a new issue