Implement signed for our fix num (#578)

* Integrates num_traits more closely.
* Implements signed for our num, and the vector2d / rect abs now can use
our fixnum.
* This is potentially breaking.
This commit is contained in:
Corwin 2024-04-09 20:41:00 +01:00 committed by GitHub
commit 6c60b770b5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 47 additions and 69 deletions

View file

@ -25,6 +25,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
have had examples changed to use statics. You should use statics where possble
for assets as consts can lead to them being included multiple times in the
ROM.
- Fixnums are now implemented with `num_traits` trait definitions.
## [0.19.1] - 2024/03/06

View file

@ -8,4 +8,4 @@ repository = "https://github.com/agbrs/agb"
[dependencies]
agb_macros = { version = "0.19.1", path = "../agb-macros" }
num = { version = "0.4", default-features = false }
num-traits = { version = "0.2", default-features = false }

View file

@ -11,6 +11,7 @@ use core::{
Sub, SubAssign,
},
};
use num_traits::Signed;
#[doc(hidden)]
/// Used internally by the [num!] macro which should be used instead.
@ -32,49 +33,25 @@ macro_rules! num {
/// A trait for everything required to use as the internal representation of the
/// fixed point number.
pub trait Number:
Sized
+ Copy
+ PartialOrd
+ Ord
+ PartialEq
+ Eq
+ Add<Output = Self>
+ Sub<Output = Self>
+ Rem<Output = Self>
+ Div<Output = Self>
+ Mul<Output = Self>
{
}
pub trait Number: Copy + PartialOrd + Ord + num_traits::Num {}
impl<I: FixedWidthUnsignedInteger, const N: usize> Number for Num<I, N> {}
impl<I: FixedWidthUnsignedInteger> Number for I {}
/// A trait for integers that don't implement unary negation
pub trait FixedWidthUnsignedInteger:
Sized
+ Copy
Copy
+ PartialOrd
+ Ord
+ PartialEq
+ Eq
+ Shl<usize, Output = Self>
+ Shr<usize, Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Not<Output = Self>
+ BitAnd<Output = Self>
+ Rem<Output = Self>
+ Div<Output = Self>
+ Mul<Output = Self>
+ From<u8>
+ Debug
+ Display
+ num_traits::Num
+ Not<Output = Self>
{
/// Returns the representation of zero
fn zero() -> Self;
/// Returns the representation of one
fn one() -> Self;
/// Returns the representation of ten
fn ten() -> Self;
/// Converts an i32 to it's own representation, panics on failure
@ -84,23 +61,13 @@ pub trait FixedWidthUnsignedInteger:
}
/// Trait for an integer that includes negation
pub trait FixedWidthSignedInteger: FixedWidthUnsignedInteger + Neg<Output = Self> {
#[must_use]
/// Returns the absolute value of the number
fn fixed_abs(self) -> Self;
}
pub trait FixedWidthSignedInteger: FixedWidthUnsignedInteger + num_traits::sign::Signed {}
impl<I: FixedWidthUnsignedInteger + Signed> FixedWidthSignedInteger for I {}
macro_rules! fixed_width_unsigned_integer_impl {
($T: ty, $Upcast: ident) => {
impl FixedWidthUnsignedInteger for $T {
#[inline(always)]
fn zero() -> Self {
0
}
#[inline(always)]
fn one() -> Self {
1
}
#[inline(always)]
fn ten() -> Self {
10
@ -119,6 +86,8 @@ macro_rules! upcast_multiply_impl {
($T: ty, optimised_64_bit) => {
#[inline(always)]
fn upcast_multiply(a: Self, b: Self, n: usize) -> Self {
use num_traits::One;
let mask = (Self::one() << n).wrapping_sub(1);
let a_floor = a >> n;
@ -144,17 +113,6 @@ macro_rules! upcast_multiply_impl {
};
}
macro_rules! fixed_width_signed_integer_impl {
($T: ty) => {
impl FixedWidthSignedInteger for $T {
#[inline(always)]
fn fixed_abs(self) -> Self {
self.abs()
}
}
};
}
fixed_width_unsigned_integer_impl!(u8, u32);
fixed_width_unsigned_integer_impl!(i16, i32);
fixed_width_unsigned_integer_impl!(u16, u32);
@ -162,15 +120,12 @@ fixed_width_unsigned_integer_impl!(u16, u32);
fixed_width_unsigned_integer_impl!(i32, optimised_64_bit);
fixed_width_unsigned_integer_impl!(u32, optimised_64_bit);
fixed_width_signed_integer_impl!(i16);
fixed_width_signed_integer_impl!(i32);
/// A fixed point number represented using `I` with `N` bits of fractional precision
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct Num<I: FixedWidthUnsignedInteger, const N: usize>(I);
impl<I: FixedWidthUnsignedInteger, const N: usize> num::Zero for Num<I, N> {
impl<I: FixedWidthUnsignedInteger, const N: usize> num_traits::Zero for Num<I, N> {
fn zero() -> Self {
Self::new(I::zero())
}
@ -180,19 +135,19 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> num::Zero for Num<I, N> {
}
}
impl<I: FixedWidthUnsignedInteger, const N: usize> num::One for Num<I, N> {
impl<I: FixedWidthUnsignedInteger, const N: usize> num_traits::One for Num<I, N> {
fn one() -> Self {
Self::new(I::one())
}
}
impl<I: FixedWidthUnsignedInteger + num::Num, const N: usize> num::Num for Num<I, N> {
type FromStrRadixErr = <f64 as num::Num>::FromStrRadixErr;
impl<I: FixedWidthUnsignedInteger + num_traits::Num, const N: usize> num_traits::Num for Num<I, N> {
type FromStrRadixErr = <f64 as num_traits::Num>::FromStrRadixErr;
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
// for some reason, if I don't have this it's an error, and if I do it is unused
#[allow(unused_imports)]
use num::traits::float::FloatCore;
use num_traits::float::FloatCore;
let v: f64 = f64::from_str_radix(str, radix)?;
@ -546,7 +501,7 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
/// assert_eq!(n.abs(), num!(5.5));
/// ```
pub fn abs(self) -> Self {
Num(self.0.fixed_abs())
Num(self.0.abs())
}
/// Calculates the cosine of a fixed point number with the domain of [0, 1].
@ -595,6 +550,28 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
}
}
impl<I: FixedWidthSignedInteger, const N: usize> num_traits::sign::Signed for Num<I, N> {
fn abs(&self) -> Self {
Self::abs(*self)
}
fn abs_sub(&self, other: &Self) -> Self {
Self(self.0.abs_sub(&other.0))
}
fn signum(&self) -> Self {
Self(self.0.signum())
}
fn is_positive(&self) -> bool {
self.0.is_positive()
}
fn is_negative(&self) -> bool {
self.0.is_negative()
}
}
impl<I: FixedWidthUnsignedInteger, const N: usize> Display for Num<I, N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let mut integral = self.0 >> N;
@ -759,12 +736,12 @@ impl<T: Number> SubAssign<Self> for Vector2D<T> {
}
}
impl<T: FixedWidthSignedInteger> Vector2D<T> {
impl<T: Number + Signed> Vector2D<T> {
/// Calculates the absolute value of the x and y components.
pub fn abs(self) -> Self {
Self {
x: self.x.fixed_abs(),
y: self.y.fixed_abs(),
x: self.x.abs(),
y: self.y.abs(),
}
}
}
@ -1083,13 +1060,13 @@ impl<T: FixedWidthUnsignedInteger> Rect<T> {
}
}
impl<T: FixedWidthSignedInteger> Rect<T> {
impl<T: Number + Signed> Rect<T> {
/// Makes a rectangle that represents the equivalent location in space but with a positive size
pub fn abs(self) -> Self {
Self {
position: (
self.position.x + self.size.x.min(0.into()),
self.position.y + self.size.y.min(0.into()),
self.position.x + self.size.x.min(T::zero()),
self.position.y + self.size.y.min(T::zero()),
)
.into(),
size: self.size.abs(),
@ -1166,7 +1143,7 @@ mod tests {
use super::*;
use alloc::format;
use num::Num as _;
use num_traits::Num as _;
#[test]
fn formats_whole_numbers_correctly() {