Add support for flash save media.

This commit is contained in:
Alissa Rao 2022-08-17 04:27:42 -07:00
parent 4397bb0d66
commit 8dd0f4768a
No known key found for this signature in database
GPG key ID: 9314D8F6745E881E
7 changed files with 591 additions and 57 deletions

View file

@ -39,7 +39,7 @@ fn do_test(
let mut access = gba.save.access_with_timer(timers.timer2)?;
// writes data to the save media
let prepared = access.prepare_write(offset..offset + len)?;
let mut prepared = access.prepare_write(offset..offset + len)?;
let mut rng = seed.clone();
let mut current = offset;
let end = offset + len;

View file

@ -0,0 +1,16 @@
#![no_std]
#![no_main]
#![feature(custom_test_frameworks)]
#![reexport_test_harness_main = "test_main"]
#![test_runner(agb::test_runner::test_runner)]
mod save_test_common;
fn save_setup(gba: &mut agb::Gba) {
gba.save.init_flash_128k();
}
#[agb::entry]
fn entry(_gba: agb::Gba) -> ! {
loop {}
}

View file

@ -0,0 +1,16 @@
#![no_std]
#![no_main]
#![feature(custom_test_frameworks)]
#![reexport_test_harness_main = "test_main"]
#![test_runner(agb::test_runner::test_runner)]
mod save_test_common;
fn save_setup(gba: &mut agb::Gba) {
gba.save.init_flash_64k();
}
#[agb::entry]
fn entry(_gba: agb::Gba) -> ! {
loop {}
}

470
agb/src/save/flash.rs Normal file
View file

@ -0,0 +1,470 @@
//! Module for flash save media support.
//!
//! Flash may be read with ordinary read commands, but writing requires
//! sending structured commands to the flash chip.
// TODO: Setup cartridge read timings for faster Flash access.
use crate::memory_mapped::{MemoryMapped, MemoryMapped1DArray};
use crate::save::{Error, MediaInfo, MediaType, RawSaveAccess};
use crate::save::asm_utils::*;
use crate::sync::{InitOnce, Static};
use core::cmp;
use crate::save::utils::Timeout;
// Volatile address ports for flash
const FLASH_PORT_BANK: MemoryMapped<u8> = unsafe { MemoryMapped::new(0x0E000000) };
const FLASH_PORT_A: MemoryMapped<u8> = unsafe { MemoryMapped::new(0x0E005555) };
const FLASH_PORT_B: MemoryMapped<u8> = unsafe { MemoryMapped::new(0x0E002AAA) };
const FLASH_DATA: MemoryMapped1DArray<u8, 65536> = unsafe { MemoryMapped1DArray::new(0x0E000000) };
// Various constants related to sector sizes
const BANK_SHIFT: usize = 16; // 64 KiB
const BANK_LEN: usize = 1 << BANK_SHIFT;
const BANK_MASK: usize = BANK_LEN - 1;
// Constants relating to flash commands.
const CMD_SET_BANK: u8 = 0xB0;
const CMD_READ_CHIP_ID: u8 = 0x90;
const CMD_READ_CONTENTS: u8 = 0xF0;
const CMD_WRITE: u8 = 0xA0;
const CMD_ERASE_SECTOR_BEGIN: u8 = 0x80;
const CMD_ERASE_SECTOR_CONFIRM: u8 = 0x30;
const CMD_ERASE_SECTOR_ALL: u8 = 0x10;
/// Starts a command to the flash chip.
fn start_flash_command() {
FLASH_PORT_A.set(0xAA);
FLASH_PORT_B.set(0x55);
}
/// Helper function for issuing commands to the flash chip.
fn issue_flash_command(c2: u8) {
start_flash_command();
FLASH_PORT_A.set(c2);
}
/// A simple thing to avoid excessive bank switches
static CURRENT_BANK: Static<u8> = Static::new(!0);
fn set_bank(bank: u8) -> Result<(), Error> {
if bank == 0xFF {
Err(Error::OutOfBounds)
} else if bank != CURRENT_BANK.read() {
issue_flash_command(CMD_SET_BANK);
FLASH_PORT_BANK.set(bank as u8);
CURRENT_BANK.write(bank);
Ok(())
} else {
Ok(())
}
}
/// Identifies a particular f
/// lash chip in use by a Game Pak.
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Debug)]
#[repr(u8)]
pub enum FlashChipType {
/// 64KiB SST chip
Sst64K,
/// 64KiB Macronix chip
Macronix64K,
/// 64KiB Panasonic chip
Panasonic64K,
/// 64KiB Atmel chip
Atmel64K,
/// 128KiB Sanyo chip
Sanyo128K,
/// 128KiB Macronix chip
Macronix128K,
/// An unidentified chip
Unknown,
}
impl FlashChipType {
/// Returns the type of the flash chip currently in use.
pub fn detect() -> Result<Self, Error> {
Ok(Self::from_id(detect_chip_id()?))
}
/// Determines the flash chip type from an ID.
pub fn from_id(id: u16) -> Self {
match id {
0xD4BF => FlashChipType::Sst64K,
0x1CC2 => FlashChipType::Macronix64K,
0x1B32 => FlashChipType::Panasonic64K,
0x3D1F => FlashChipType::Atmel64K,
0x1362 => FlashChipType::Sanyo128K,
0x09C2 => FlashChipType::Macronix128K,
_ => FlashChipType::Unknown,
}
}
}
/// Determines the raw ID of the flash chip currently in use.
pub fn detect_chip_id() -> Result<u16, Error> {
issue_flash_command(CMD_READ_CHIP_ID);
let high = unsafe { read_raw_byte(0x0E000001) };
let low = unsafe { read_raw_byte(0x0E000000) };
let id = (high as u16) << 8 | low as u16;
issue_flash_command(CMD_READ_CONTENTS);
Ok(id)
}
/// Information relating to a particular flash chip that could be found in a
/// Game Pak.
#[allow(dead_code)]
struct ChipInfo {
/// The wait state required to read from the chip.
read_wait: u8,
/// The wait state required to write to the chip.
write_wait: u8,
/// The timeout in milliseconds for writes to this chip.
write_timeout: u16,
/// The timeout in milliseconds for erasing a sector in this chip.
erase_sector_timeout: u16,
/// The timeout in milliseconds for erasing the entire chip.
erase_chip_timeout: u16,
/// The number of 64KiB banks in this chip.
bank_count: u8,
/// Whether this is an Atmel chip, which has 128 byte sectors instead of 4K.
uses_atmel_api: bool,
/// Whether this is an Macronix chip, which requires an additional command
/// to cancel the current action after a timeout.
requires_cancel_command: bool,
/// The [`MediaInfo`] to return for this chip type.
info: &'static MediaInfo,
}
// Media info for the various chipsets.
static INFO_64K: MediaInfo = MediaInfo {
media_type: MediaType::Flash64K,
sector_shift: 12, // 4 KiB
sector_count: 16, // 4 KiB * 16 = 64 KiB
uses_prepare_write: true,
};
static INFO_64K_ATMEL: MediaInfo = MediaInfo {
media_type: MediaType::Flash64K,
sector_shift: 7, // 128 bytes
sector_count: 512, // 128 bytes * 512 = 64 KiB
uses_prepare_write: false,
};
static INFO_128K: MediaInfo = MediaInfo {
media_type: MediaType::Flash128K,
sector_shift: 12,
sector_count: 32, // 4 KiB * 32 = 128 KiB
uses_prepare_write: true,
};
// Chip info for the various chipsets.
static CHIP_INFO_SST_64K: ChipInfo = ChipInfo {
read_wait: 2, // 2 cycles
write_wait: 1, // 3 cycles
write_timeout: 10,
erase_sector_timeout: 40,
erase_chip_timeout: 200,
bank_count: 1,
uses_atmel_api: false,
requires_cancel_command: false,
info: &INFO_64K,
};
static CHIP_INFO_MACRONIX_64K: ChipInfo = ChipInfo {
read_wait: 1, // 3 cycles
write_wait: 3, // 8 cycles
write_timeout: 10,
erase_sector_timeout: 2000,
erase_chip_timeout: 2000,
bank_count: 1,
uses_atmel_api: false,
requires_cancel_command: true,
info: &INFO_64K,
};
static CHIP_INFO_PANASONIC_64K: ChipInfo = ChipInfo {
read_wait: 2, // 2 cycles
write_wait: 0, // 4 cycles
write_timeout: 10,
erase_sector_timeout: 500,
erase_chip_timeout: 500,
bank_count: 1,
uses_atmel_api: false,
requires_cancel_command: false,
info: &INFO_64K,
};
static CHIP_INFO_ATMEL_64K: ChipInfo = ChipInfo {
read_wait: 3, // 8 cycles
write_wait: 3, // 8 cycles
write_timeout: 40,
erase_sector_timeout: 40,
erase_chip_timeout: 40,
bank_count: 1,
uses_atmel_api: true,
requires_cancel_command: false,
info: &INFO_64K_ATMEL,
};
static CHIP_INFO_GENERIC_64K: ChipInfo = ChipInfo {
read_wait: 3, // 8 cycles
write_wait: 3, // 8 cycles
write_timeout: 40,
erase_sector_timeout: 2000,
erase_chip_timeout: 2000,
bank_count: 1,
uses_atmel_api: false,
requires_cancel_command: true,
info: &INFO_128K,
};
static CHIP_INFO_GENERIC_128K: ChipInfo = ChipInfo {
read_wait: 1, // 3 cycles
write_wait: 3, // 8 cycles
write_timeout: 10,
erase_sector_timeout: 2000,
erase_chip_timeout: 2000,
bank_count: 2,
uses_atmel_api: false,
requires_cancel_command: false,
info: &INFO_128K,
};
impl FlashChipType {
/// Returns the internal info for this chip.
fn chip_info(&self) -> &'static ChipInfo {
match *self {
FlashChipType::Sst64K => &CHIP_INFO_SST_64K,
FlashChipType::Macronix64K => &CHIP_INFO_MACRONIX_64K,
FlashChipType::Panasonic64K => &CHIP_INFO_PANASONIC_64K,
FlashChipType::Atmel64K => &CHIP_INFO_ATMEL_64K,
FlashChipType::Sanyo128K => &CHIP_INFO_GENERIC_128K,
FlashChipType::Macronix128K => &CHIP_INFO_GENERIC_128K,
FlashChipType::Unknown => &CHIP_INFO_GENERIC_64K,
}
}
}
static CHIP_INFO: InitOnce<&'static ChipInfo> = InitOnce::new();
fn cached_chip_info() -> Result<&'static ChipInfo, Error> {
CHIP_INFO
.try_get(|| -> Result<_, Error> { Ok(FlashChipType::detect()?.chip_info()) })
.map(Clone::clone)
}
/// Actual implementation of the ChipInfo functions.
impl ChipInfo {
/// Returns the total length of this chip.
fn total_len(&self) -> usize {
self.info.sector_count << self.info.sector_shift
}
// Checks whether a byte offset is in bounds.
fn check_len(&self, offset: usize, len: usize) -> Result<(), Error> {
if offset.checked_add(len).is_some() && offset + len <= self.total_len() {
Ok(())
} else {
Err(Error::OutOfBounds)
}
}
// Checks whether a sector offset is in bounds.
fn check_sector_len(&self, offset: usize, len: usize) -> Result<(), Error> {
if offset.checked_add(len).is_some() && offset + len <= self.info.sector_count {
Ok(())
} else {
Err(Error::OutOfBounds)
}
}
/// Sets the currently active bank.
fn set_bank(&self, bank: usize) -> Result<(), Error> {
if bank >= self.bank_count as usize {
Err(Error::OutOfBounds)
} else if self.bank_count > 1 {
set_bank(bank as u8)
} else {
Ok(())
}
}
/// Reads a buffer from save media into memory.
fn read_buffer(&self, mut offset: usize, mut buf: &mut [u8]) -> Result<(), Error> {
while buf.len() != 0 {
self.set_bank(offset >> BANK_SHIFT)?;
let start = offset & BANK_MASK;
let end_len = cmp::min(BANK_LEN - start, buf.len());
unsafe {
read_raw_buf(&mut buf[..end_len], 0x0E000000 + start);
}
buf = &mut buf[end_len..];
offset += end_len;
}
Ok(())
}
/// Verifies that a buffer was properly stored into save media.
fn verify_buffer(&self, mut offset: usize, mut buf: &[u8]) -> Result<bool, Error> {
while buf.len() != 0 {
self.set_bank(offset >> BANK_SHIFT)?;
let start = offset & BANK_MASK;
let end_len = cmp::min(BANK_LEN - start, buf.len());
if !unsafe { verify_raw_buf(&buf[..end_len], 0x0E000000 + start) } {
return Ok(false);
}
buf = &buf[end_len..];
offset += end_len;
}
Ok(true)
}
/// Waits for a timeout, or an operation to complete.
fn wait_for_timeout(
&self, offset: usize, val: u8, ms: u16, timeout: &mut Timeout,
) -> Result<(), Error> {
timeout.start();
let offset = 0x0E000000 + offset;
while unsafe { read_raw_byte(offset) != val } {
if timeout.check_timeout_met(ms) {
if self.requires_cancel_command {
FLASH_PORT_A.set(0xF0);
}
return Err(Error::OperationTimedOut);
}
}
Ok(())
}
/// Erases a sector to flash.
fn erase_sector(&self, sector: usize, timeout: &mut Timeout) -> Result<(), Error> {
let offset = sector << self.info.sector_shift;
self.set_bank(offset >> BANK_SHIFT)?;
issue_flash_command(CMD_ERASE_SECTOR_BEGIN);
start_flash_command();
FLASH_DATA.set(offset & BANK_MASK, CMD_ERASE_SECTOR_CONFIRM);
self.wait_for_timeout(offset & BANK_MASK, 0xFF, self.erase_sector_timeout, timeout)
}
/// Erases the entire chip.
fn erase_chip(&self, timeout: &mut Timeout) -> Result<(), Error> {
issue_flash_command(CMD_ERASE_SECTOR_BEGIN);
issue_flash_command(CMD_ERASE_SECTOR_ALL);
self.wait_for_timeout(0, 0xFF, 3000, timeout)
}
/// Writes a byte to the save media.
fn write_byte(&self, offset: usize, byte: u8, timeout: &mut Timeout) -> Result<(), Error> {
issue_flash_command(CMD_WRITE);
FLASH_DATA.set(offset, byte);
self.wait_for_timeout(offset, byte, self.write_timeout, timeout)
}
/// Writes an entire buffer to the save media.
fn write_buffer(&self, offset: usize, buf: &[u8], timeout: &mut Timeout) -> Result<(), Error> {
self.set_bank(offset >> BANK_SHIFT)?;
for i in 0..buf.len() {
let byte_off = offset + i;
if (byte_off & BANK_MASK) == 0 {
self.set_bank(byte_off >> BANK_SHIFT)?;
}
self.write_byte(byte_off & BANK_MASK, buf[i], timeout)?;
}
Ok(())
}
/// Erases and writes an entire 128b sector on Atmel devices.
fn write_atmel_sector_raw(
&self, offset: usize, buf: &[u8], timeout: &mut Timeout,
) -> Result<(), Error> {
crate::interrupt::free(|_| {
issue_flash_command(CMD_WRITE);
for i in 0..128 {
FLASH_DATA.set(offset + i, buf[i]);
}
self.wait_for_timeout(offset + 127, buf[127], self.erase_sector_timeout, timeout)
})?;
Ok(())
}
/// Writes an entire 128b sector on Atmel devices, copying existing data in
/// case of non-sector aligned writes.
#[inline(never)] // avoid allocating the 128 byte buffer for no reason.
fn write_atmel_sector_safe(
&self, offset: usize, buf: &[u8], start: usize, timeout: &mut Timeout,
) -> Result<(), Error> {
let mut sector = [0u8; 128];
self.read_buffer(offset, &mut sector[0..start])?;
sector[start..start + buf.len()].copy_from_slice(buf);
self.read_buffer(offset + start + buf.len(), &mut sector[start + buf.len()..128])?;
self.write_atmel_sector_raw(offset, &sector, timeout)
}
/// Writes an entire 128b sector on Atmel devices, copying existing data in
/// case of non-sector aligned writes.
///
/// This avoids allocating stack if there is no need to.
fn write_atmel_sector(
&self, offset: usize, buf: &[u8], start: usize, timeout: &mut Timeout,
) -> Result<(), Error> {
if start == 0 && buf.len() == 128 {
self.write_atmel_sector_raw(offset, buf, timeout)
} else {
self.write_atmel_sector_safe(offset, buf, start, timeout)
}
}
}
/// The [`RawSaveAccess`] used for flash save media.
pub struct FlashAccess;
impl RawSaveAccess for FlashAccess {
fn info(&self) -> Result<&'static MediaInfo, Error> {
Ok(cached_chip_info()?.info)
}
fn read(&self, offset: usize, buf: &mut [u8], _: &mut Timeout) -> Result<(), Error> {
let chip = cached_chip_info()?;
chip.check_len(offset, buf.len())?;
chip.read_buffer(offset, buf)
}
fn verify(&self, offset: usize, buf: &[u8], _: &mut Timeout) -> Result<bool, Error> {
let chip = cached_chip_info()?;
chip.check_len(offset, buf.len())?;
chip.verify_buffer(offset, buf)
}
fn prepare_write(
&self, sector: usize, count: usize, timeout: &mut Timeout,
) -> Result<(), Error> {
let chip = cached_chip_info()?;
chip.check_sector_len(sector, count)?;
if chip.uses_atmel_api {
Ok(())
} else if count == chip.info.sector_count {
chip.erase_chip(timeout)
} else {
for i in sector..sector + count {
chip.erase_sector(i, timeout)?;
}
Ok(())
}
}
fn write(&self, mut offset: usize, mut buf: &[u8], timeout: &mut Timeout) -> Result<(), Error> {
let chip = cached_chip_info()?;
chip.check_len(offset, buf.len())?;
if chip.uses_atmel_api {
while buf.len() != 0 {
let start = offset & 127;
let end_len = cmp::min(128 - start, buf.len());
chip.write_atmel_sector(offset & !127, &buf[..end_len], start, timeout)?;
buf = &buf[end_len..];
offset += end_len;
}
Ok(())
} else {
// Write the bytes one by one.
chip.write_buffer(offset, buf, timeout)?;
Ok(())
}
}
}

View file

@ -103,12 +103,13 @@
//! small sector size.
use core::ops::Range;
use crate::save::utils::Timeout;
use crate::sync::{Mutex, RawMutexGuard};
use crate::timer::Timer;
mod asm_utils;
//pub mod eeprom;
//pub mod flash;
mod flash;
mod sram;
mod utils;
@ -181,10 +182,10 @@ impl MediaInfo {
/// A trait allowing low-level saving and writing to save media.
trait RawSaveAccess: Sync {
fn info(&self) -> Result<&'static MediaInfo, Error>;
fn read(&self, offset: usize, buffer: &mut [u8]) -> Result<(), Error>;
fn verify(&self, offset: usize, buffer: &[u8]) -> Result<bool, Error>;
fn prepare_write(&self, sector: usize, count: usize) -> Result<(), Error>;
fn write(&self, offset: usize, buffer: &[u8]) -> Result<(), Error>;
fn read(&self, offset: usize, buffer: &mut [u8], timeout: &mut Timeout) -> Result<(), Error>;
fn verify(&self, offset: usize, buffer: &[u8], timeout: &mut Timeout) -> Result<bool, Error>;
fn prepare_write(&self, sector: usize, count: usize, timeout: &mut Timeout) -> Result<(), Error>;
fn write(&self, offset: usize, buffer: &[u8], timeout: &mut Timeout) -> Result<(), Error>;
}
static CURRENT_SAVE_ACCESS: Mutex<Option<&'static dyn RawSaveAccess>> = Mutex::new(None);
@ -201,7 +202,7 @@ fn get_save_implementation() -> Option<&'static dyn RawSaveAccess> {
/// Allows reading and writing of save media.
pub struct SaveData {
lock: RawMutexGuard<'static>,
_lock: RawMutexGuard<'static>,
access: &'static dyn RawSaveAccess,
info: &'static MediaInfo,
timeout: utils::Timeout,
@ -211,7 +212,7 @@ impl SaveData {
fn new(timer: Option<Timer>) -> Result<SaveData, Error> {
match get_save_implementation() {
Some(access) => Ok(SaveData {
lock: utils::lock_media()?,
_lock: utils::lock_media_access()?,
access,
info: access.info()?,
timeout: utils::Timeout::new(timer),
@ -255,15 +256,15 @@ impl SaveData {
/// Copies data from the save media to a buffer.
///
/// If an error is returned, the contents of the buffer are unpredictable.
pub fn read(&self, offset: usize, buffer: &mut [u8]) -> Result<(), Error> {
pub fn read(&mut self, offset: usize, buffer: &mut [u8]) -> Result<(), Error> {
self.check_bounds_len(offset, buffer.len())?;
self.access.read(offset, buffer)
self.access.read(offset, buffer, &mut self.timeout)
}
/// Verifies that a given block of memory matches the save media.
pub fn verify(&self, offset: usize, buffer: &[u8]) -> Result<bool, Error> {
pub fn verify(&mut self, offset: usize, buffer: &[u8]) -> Result<bool, Error> {
self.check_bounds_len(offset, buffer.len())?;
self.access.verify(offset, buffer)
self.access.verify(offset, buffer, &mut self.timeout)
}
/// Returns a range that contains all sectors the input range overlaps.
@ -286,7 +287,9 @@ impl SaveData {
if self.info.uses_prepare_write {
let range = self.align_range(range.clone());
let shift = self.info.sector_shift;
self.access.prepare_write(range.start >> shift, range.len() >> shift)?;
self.access.prepare_write(
range.start >> shift, range.len() >> shift, &mut self.timeout,
)?;
}
Ok(SavePreparedBlock {
parent: self,
@ -307,14 +310,14 @@ impl<'a> SavePreparedBlock<'a> {
/// call to `prepare_write` will leave the save data in an unpredictable
/// state. If an error is returned, the contents of the save media is
/// unpredictable.
pub fn write(&self, offset: usize, buffer: &[u8]) -> Result<(), Error> {
pub fn write(&mut self, offset: usize, buffer: &[u8]) -> Result<(), Error> {
if buffer.len() == 0 {
Ok(())
} else if !self.range.contains(&offset) ||
!self.range.contains(&(offset + buffer.len() - 1)) {
Err(Error::OutOfBounds)
} else {
self.parent.access.write(offset, buffer)
self.parent.access.write(offset, buffer, &mut self.parent.timeout)
}
}
@ -327,7 +330,7 @@ impl<'a> SavePreparedBlock<'a> {
/// call to `prepare_write` will leave the save data in an unpredictable
/// state. If an error is returned, the contents of the save media is
/// unpredictable.
pub fn write_and_verify(&self, offset: usize, buffer: &[u8]) -> Result<(), Error> {
pub fn write_and_verify(&mut self, offset: usize, buffer: &[u8]) -> Result<(), Error> {
self.write(offset, buffer)?;
if !self.parent.verify(offset, buffer)? {
Err(Error::WriteError)
@ -387,6 +390,36 @@ impl SaveManager {
set_save_implementation(&sram::BatteryBackedAccess);
}
/// Declares that the ROM uses 64KiB flash memory.
///
/// Flash save media is generally very slow to write to and relatively fast
/// to read from. It is the only real option if you need larger save data.
///
/// This creates a marker in the ROM that allows emulators to understand what
/// save type the Game Pak uses, and configures the save manager to use the
/// given save type.
///
/// Only one `init_*` function may be called in the lifetime of the program.
pub fn init_flash_64k(&mut self) {
marker::emit_flash_512k_marker();
set_save_implementation(&flash::FlashAccess);
}
/// Declares that the ROM uses 128KiB flash memory.
///
/// Flash save media is generally very slow to write to and relatively fast
/// to read from. It is the only real option if you need larger save data.
///
/// This creates a marker in the ROM that allows emulators to understand what
/// save type the Game Pak uses, and configures the save manager to use the
/// given save type.
///
/// Only one `init_*` function may be called in the lifetime of the program.
pub fn init_flash_128k(&mut self) {
marker::emit_flash_1m_marker();
set_save_implementation(&flash::FlashAccess);
}
/// Creates a new accessor to the save data.
///
/// You must have initialized the save manager beforehand to use a specific

View file

@ -5,6 +5,7 @@
use crate::save::{Error, MediaInfo, MediaType, RawSaveAccess};
use crate::save::asm_utils::*;
use crate::save::utils::Timeout;
const SRAM_SIZE: usize = 32 * 1024; // 32 KiB
@ -28,7 +29,7 @@ impl RawSaveAccess for BatteryBackedAccess {
})
}
fn read(&self, offset: usize, buffer: &mut [u8]) -> Result<(), Error> {
fn read(&self, offset: usize, buffer: &mut [u8], _: &mut Timeout) -> Result<(), Error> {
check_bounds(offset, buffer.len())?;
unsafe {
read_raw_buf(buffer, 0x0E000000 + offset);
@ -36,17 +37,17 @@ impl RawSaveAccess for BatteryBackedAccess {
Ok(())
}
fn verify(&self, offset: usize, buffer: &[u8]) -> Result<bool, Error> {
fn verify(&self, offset: usize, buffer: &[u8], _: &mut Timeout) -> Result<bool, Error> {
check_bounds(offset, buffer.len())?;
let val = unsafe { verify_raw_buf(buffer, 0x0E000000 + offset) };
Ok(val)
}
fn prepare_write(&self, _: usize, _: usize) -> Result<(), Error> {
fn prepare_write(&self, _: usize, _: usize, _: &mut Timeout) -> Result<(), Error> {
Ok(())
}
fn write(&self, offset: usize, buffer: &[u8]) -> Result<(), Error> {
fn write(&self, offset: usize, buffer: &[u8], _: &mut Timeout) -> Result<(), Error> {
check_bounds(offset, buffer.len())?;
unsafe {
write_raw_buf(0x0E000000 + offset, buffer);

View file

@ -23,6 +23,7 @@ impl Timeout {
/// Starts this timeout.
pub fn start(&mut self) {
if let Some(timer) = &mut self.timer {
timer.set_enabled(false);
timer.set_divider(Divider::Divider1024);
timer.set_interrupt(false);
timer.set_overflow_amount(0xFFFF);
@ -42,10 +43,7 @@ impl Timeout {
}
}
/// Tries to obtain a lock on the global lock for save operations.
///
/// This is used to prevent problems with stateful save media.
pub fn lock_media() -> Result<RawMutexGuard<'static>, Error> {
pub fn lock_media_access() -> Result<RawMutexGuard<'static>, Error> {
static LOCK: RawMutex = RawMutex::new();
match LOCK.try_lock() {
Some(x) => Ok(x),