Add precision support for fixnums (#437)

- [ ] Changelog updated / no changelog update needed
This commit is contained in:
Corwin 2023-06-05 21:00:54 +01:00 committed by GitHub
commit a7269ed65f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -539,26 +539,55 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Display for Num<I, N> {
// //
// But if you think of a negative number, you'd like it to be `negative number - non negative fraction` // But if you think of a negative number, you'd like it to be `negative number - non negative fraction`
// So we have to add 1 to the integral bit, and take 1 - fractional bit // So we have to add 1 to the integral bit, and take 1 - fractional bit
if fractional != I::zero() && integral < I::zero() { let sign = if fractional != I::zero() && integral < I::zero() {
integral = integral + I::one(); integral = integral + I::one();
if integral == I::zero() { fractional = (I::one() << N) - fractional;
// If the number is in the range (-1, 0), then we just bumped `integral` from -1 to 0, -1
// so we need to compensate for the missing negative sign. } else {
1
};
if let Some(precision) = f.precision() {
let precision_multiplier = I::from_as_i32(10_i32.pow(precision as u32));
let fractional_as_integer = fractional * precision_multiplier * I::ten();
let mut fractional_as_integer = fractional_as_integer >> N;
if fractional_as_integer % I::ten() >= I::from_as_i32(5) {
fractional_as_integer = fractional_as_integer + I::ten();
}
let mut fraction_to_write = fractional_as_integer / I::ten();
if fraction_to_write >= precision_multiplier {
integral = integral + I::from_as_i32(sign);
fraction_to_write = fraction_to_write - precision_multiplier;
}
if sign == -1 && integral == I::zero() && fraction_to_write != I::zero() {
write!(f, "-")?; write!(f, "-")?;
} }
fractional = (I::one() << N) - fractional;
}
write!(f, "{integral}")?; write!(f, "{integral}")?;
if fractional != I::zero() { if precision != 0 {
write!(f, ".")?; write!(f, ".{:#0width$}", fraction_to_write, width = precision)?;
} }
} else {
if sign == -1 && integral == I::zero() {
write!(f, "-")?;
}
write!(f, "{integral}")?;
while fractional & mask != I::zero() { if fractional != I::zero() {
fractional = fractional * I::ten(); write!(f, ".")?;
write!(f, "{}", (fractional & !mask) >> N)?; }
fractional = fractional & mask;
while fractional & mask != I::zero() {
fractional = fractional * I::ten();
write!(f, "{}", (fractional & !mask) >> N)?;
fractional = fractional & mask;
}
} }
Ok(()) Ok(())
@ -1069,6 +1098,51 @@ mod tests {
assert_eq!(format!("{d}"), "-0.25"); assert_eq!(format!("{d}"), "-0.25");
} }
mod precision {
use super::*;
macro_rules! num_ {
($n: literal) => {{
let a: Num<i32, 20> = num!($n);
a
}};
}
macro_rules! test_precision {
($TestName: ident, $Number: literal, $Expected: literal) => {
test_precision! { $TestName, $Number, $Expected, 2 }
};
($TestName: ident, $Number: literal, $Expected: literal, $Digits: literal) => {
#[test]
fn $TestName() {
assert_eq!(
format!("{:.width$}", num_!($Number), width = $Digits),
$Expected
);
}
};
}
test_precision!(positive_down, 1.2345678, "1.23");
test_precision!(positive_round_up, 1.237, "1.24");
test_precision!(negative_round_down, -1.237, "-1.24");
test_precision!(trailing_zero, 1.5, "1.50");
test_precision!(leading_zero, 1.05, "1.05");
test_precision!(positive_round_to_next_integer, 3.999, "4.00");
test_precision!(negative_round_to_next_integer, -3.999, "-4.00");
test_precision!(negative_round_to_1, -0.999, "-1.00");
test_precision!(positive_round_to_1, 0.999, "1.00");
test_precision!(positive_round_to_zero, 0.001, "0.00");
test_precision!(negative_round_to_zero, -0.001, "0.00");
test_precision!(zero_precision_negative, -0.001, "0", 0);
test_precision!(zero_precision_positive, 0.001, "0", 0);
}
#[test] #[test]
fn sqrt() { fn sqrt() {
for x in 1..1024 { for x in 1..1024 {