mirror of
https://github.com/italicsjenga/agb.git
synced 2025-01-22 23:26:33 +11:00
Merge pull request #138 from corwinkuiper/number-alpha-max-plus-beta-min
Alpha max + beta min
This commit is contained in:
commit
b63181f883
1 changed files with 62 additions and 13 deletions
|
@ -7,7 +7,12 @@ use core::{
|
|||
},
|
||||
};
|
||||
|
||||
use crate::syscall;
|
||||
#[macro_export]
|
||||
macro_rules! num {
|
||||
($value:literal) => {{
|
||||
$crate::number::Num::new_from_parts(agb_macros::num!($value))
|
||||
}};
|
||||
}
|
||||
|
||||
pub trait Number:
|
||||
Sized
|
||||
|
@ -301,11 +306,37 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
|
|||
}
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! num {
|
||||
($value:literal) => {{
|
||||
$crate::number::Num::new_from_parts(agb_macros::num!($value))
|
||||
}};
|
||||
impl<const N: usize> Num<i32, N> {
|
||||
pub fn sqrt(self) -> Self {
|
||||
assert_eq!(N % 2, 0, "N must be even to be able to square root");
|
||||
assert!(self.0 >= 0, "sqrt is only valid for positive numbers");
|
||||
let mut d = 1 << 30;
|
||||
let mut x = self.0;
|
||||
let mut c = 0;
|
||||
|
||||
while d > self.0 {
|
||||
d >>= 2;
|
||||
}
|
||||
|
||||
while d != 0 {
|
||||
if x >= c + d {
|
||||
x -= c + d;
|
||||
c = (c >> 1) + d;
|
||||
} else {
|
||||
c >>= 1;
|
||||
}
|
||||
d >>= 2;
|
||||
}
|
||||
Self(c << (N / 2))
|
||||
}
|
||||
}
|
||||
|
||||
#[test_case]
|
||||
fn sqrt(_gba: &mut crate::Gba) {
|
||||
for x in 1..1024 {
|
||||
let n: Num<i32, 8> = Num::new(x * x);
|
||||
assert_eq!(n.sqrt(), x.into());
|
||||
}
|
||||
}
|
||||
|
||||
#[test_case]
|
||||
|
@ -378,13 +409,6 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Num<i32, N> {
|
||||
pub fn sqrt(self) -> Self {
|
||||
assert_eq!(N % 2, 0, "N must be even to be able to square root");
|
||||
Self(syscall::sqrt(self.0) << (N / 2))
|
||||
}
|
||||
}
|
||||
|
||||
#[test_case]
|
||||
fn test_numbers(_gba: &mut super::Gba) {
|
||||
// test addition
|
||||
|
@ -699,9 +723,34 @@ impl<const N: usize> Vector2D<Num<i32, N>> {
|
|||
pub fn magnitude(self) -> Num<i32, N> {
|
||||
self.magnitude_squared().sqrt()
|
||||
}
|
||||
|
||||
// calculates the magnitude of a vector using the alpha max plus beta min
|
||||
// algorithm https://en.wikipedia.org/wiki/Alpha_max_plus_beta_min_algorithm
|
||||
// this has a maximum error of less than 4% of the true magnitude, probably
|
||||
// depending on the size of your fixed point approximation
|
||||
pub fn fast_magnitude(self) -> Num<i32, N> {
|
||||
let max = core::cmp::max(self.x, self.y);
|
||||
let min = core::cmp::min(self.x, self.y);
|
||||
|
||||
max * num!(0.960433870103) + min * num!(0.397824734759)
|
||||
}
|
||||
|
||||
pub fn normalise(self) -> Self {
|
||||
self / self.magnitude()
|
||||
}
|
||||
|
||||
pub fn fast_normalise(self) -> Self {
|
||||
self / self.fast_magnitude()
|
||||
}
|
||||
}
|
||||
|
||||
#[test_case]
|
||||
fn magnitude_accuracy(_gba: &mut crate::Gba) {
|
||||
let n: Vector2D<Num<i32, 16>> = (3, 4).into();
|
||||
assert!((n.magnitude() - 5).abs() < num!(0.1));
|
||||
|
||||
let n: Vector2D<Num<i32, 8>> = (3, 4).into();
|
||||
assert!((n.magnitude() - 5).abs() < num!(0.1));
|
||||
}
|
||||
|
||||
impl<T: Number, P: Number + Into<T>> From<(P, P)> for Vector2D<T> {
|
||||
|
|
Loading…
Add table
Reference in a new issue