mirror of
https://github.com/italicsjenga/agb.git
synced 2025-01-11 17:41:33 +11:00
Merge pull request #138 from corwinkuiper/number-alpha-max-plus-beta-min
Alpha max + beta min
This commit is contained in:
commit
b63181f883
|
@ -7,7 +7,12 @@ use core::{
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
use crate::syscall;
|
#[macro_export]
|
||||||
|
macro_rules! num {
|
||||||
|
($value:literal) => {{
|
||||||
|
$crate::number::Num::new_from_parts(agb_macros::num!($value))
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
|
||||||
pub trait Number:
|
pub trait Number:
|
||||||
Sized
|
Sized
|
||||||
|
@ -301,11 +306,37 @@ impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[macro_export]
|
impl<const N: usize> Num<i32, N> {
|
||||||
macro_rules! num {
|
pub fn sqrt(self) -> Self {
|
||||||
($value:literal) => {{
|
assert_eq!(N % 2, 0, "N must be even to be able to square root");
|
||||||
$crate::number::Num::new_from_parts(agb_macros::num!($value))
|
assert!(self.0 >= 0, "sqrt is only valid for positive numbers");
|
||||||
}};
|
let mut d = 1 << 30;
|
||||||
|
let mut x = self.0;
|
||||||
|
let mut c = 0;
|
||||||
|
|
||||||
|
while d > self.0 {
|
||||||
|
d >>= 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
while d != 0 {
|
||||||
|
if x >= c + d {
|
||||||
|
x -= c + d;
|
||||||
|
c = (c >> 1) + d;
|
||||||
|
} else {
|
||||||
|
c >>= 1;
|
||||||
|
}
|
||||||
|
d >>= 2;
|
||||||
|
}
|
||||||
|
Self(c << (N / 2))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test_case]
|
||||||
|
fn sqrt(_gba: &mut crate::Gba) {
|
||||||
|
for x in 1..1024 {
|
||||||
|
let n: Num<i32, 8> = Num::new(x * x);
|
||||||
|
assert_eq!(n.sqrt(), x.into());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
|
@ -378,13 +409,6 @@ impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<const N: usize> Num<i32, N> {
|
|
||||||
pub fn sqrt(self) -> Self {
|
|
||||||
assert_eq!(N % 2, 0, "N must be even to be able to square root");
|
|
||||||
Self(syscall::sqrt(self.0) << (N / 2))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test_case]
|
#[test_case]
|
||||||
fn test_numbers(_gba: &mut super::Gba) {
|
fn test_numbers(_gba: &mut super::Gba) {
|
||||||
// test addition
|
// test addition
|
||||||
|
@ -699,9 +723,34 @@ impl<const N: usize> Vector2D<Num<i32, N>> {
|
||||||
pub fn magnitude(self) -> Num<i32, N> {
|
pub fn magnitude(self) -> Num<i32, N> {
|
||||||
self.magnitude_squared().sqrt()
|
self.magnitude_squared().sqrt()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// calculates the magnitude of a vector using the alpha max plus beta min
|
||||||
|
// algorithm https://en.wikipedia.org/wiki/Alpha_max_plus_beta_min_algorithm
|
||||||
|
// this has a maximum error of less than 4% of the true magnitude, probably
|
||||||
|
// depending on the size of your fixed point approximation
|
||||||
|
pub fn fast_magnitude(self) -> Num<i32, N> {
|
||||||
|
let max = core::cmp::max(self.x, self.y);
|
||||||
|
let min = core::cmp::min(self.x, self.y);
|
||||||
|
|
||||||
|
max * num!(0.960433870103) + min * num!(0.397824734759)
|
||||||
|
}
|
||||||
|
|
||||||
pub fn normalise(self) -> Self {
|
pub fn normalise(self) -> Self {
|
||||||
self / self.magnitude()
|
self / self.magnitude()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn fast_normalise(self) -> Self {
|
||||||
|
self / self.fast_magnitude()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test_case]
|
||||||
|
fn magnitude_accuracy(_gba: &mut crate::Gba) {
|
||||||
|
let n: Vector2D<Num<i32, 16>> = (3, 4).into();
|
||||||
|
assert!((n.magnitude() - 5).abs() < num!(0.1));
|
||||||
|
|
||||||
|
let n: Vector2D<Num<i32, 8>> = (3, 4).into();
|
||||||
|
assert!((n.magnitude() - 5).abs() < num!(0.1));
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Number, P: Number + Into<T>> From<(P, P)> for Vector2D<T> {
|
impl<T: Number, P: Number + Into<T>> From<(P, P)> for Vector2D<T> {
|
||||||
|
|
Loading…
Reference in a new issue