Merge pull request #321 from corwinkuiper/affine-matrix

Some fun affine matrix functions!
This commit is contained in:
Corwin 2022-10-08 23:55:08 +01:00 committed by GitHub
commit b80f1e5a79
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 248 additions and 0 deletions

View file

@ -15,6 +15,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Added implementation of `HashMap.retain()`. - Added implementation of `HashMap.retain()`.
- Added support for affine backgrounds (tiled modes 1 and 2) which allows for scaling, rotating etc of tiled backgrounds. - Added support for affine backgrounds (tiled modes 1 and 2) which allows for scaling, rotating etc of tiled backgrounds.
- Added support for 256 colour backgrounds (when working with affine ones). - Added support for 256 colour backgrounds (when working with affine ones).
- Added affine matrix module. This allows for manipulation of affine matricies for use in backgrounds and in the future objects.
### Changes ### Changes
- Many of the places that originally disabled IRQs now use the `sync` module, reducing the chance of missed interrupts. - Many of the places that originally disabled IRQs now use the `sync` module, reducing the chance of missed interrupts.

246
agb/src/display/affine.rs Normal file
View file

@ -0,0 +1,246 @@
#![deny(missing_docs)]
//! # Affine matricies for the Game Boy Advance
//!
//! An affine matrix represents an affine transformation, an affine
//! transformation being one which preserves parallel lines (note that this
//! therefore cannot represent perspective seen in games like Super Mario Kart).
//! Affine matricies are used in two places on the GBA, for affine backgrounds
//! and for affine objects.
//!
//! # Linear Algebra basics
//! As a matrix, they can be manipulated using linear algebra, although you
//! shouldn't need to know linear algebra to use this apart from a few things
//!
//! If `A` and `B` are matricies, then matrix `C = A * B` represents the
//! transformation `A` performed on `B`, or alternatively `C` is transformation
//! `B` followed by transformation `A`.
//!
//! Additionally matrix multiplication is not commutative, meaning swapping the
//! order changes the result, or `A * B ≢ B * A`.
use core::{
convert::{TryFrom, TryInto},
ops::{Mul, MulAssign},
};
use agb_fixnum::{Num, Vector2D};
type AffineMatrixElement = Num<i32, 8>;
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
/// An affine matrix stored in a way that is efficient for the GBA to perform
/// operations on. This implements multiplication.
pub struct AffineMatrix {
a: AffineMatrixElement,
b: AffineMatrixElement,
c: AffineMatrixElement,
d: AffineMatrixElement,
x: AffineMatrixElement,
y: AffineMatrixElement,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// The error emitted upon a conversion that could not be performed due to
/// overflowing the destination data size
pub struct OverflowError(pub(crate) ());
impl AffineMatrix {
#[must_use]
/// The Identity matrix. The identity matrix can be thought of as 1 and is
/// represented by `I`. For a matrix `A`, `A ≡ A * I ≡ I * A`.
pub fn identity() -> Self {
AffineMatrix {
a: 1.into(),
b: 0.into(),
c: 0.into(),
d: 1.into(),
x: 0.into(),
y: 0.into(),
}
}
#[must_use]
/// Generates the matrix that represents a rotation
pub fn from_rotation<const N: usize>(angle: Num<i32, N>) -> Self {
fn from_rotation(angle: Num<i32, 28>) -> AffineMatrix {
let cos = angle.cos().change_base();
let sin = angle.sin().change_base();
// This might look backwards, but the gba does texture mapping, ie a
// point in screen base is transformed using the matrix to graphics
// space rather than how you might conventionally think of it.
AffineMatrix {
a: cos,
b: sin,
c: -sin,
d: cos,
x: 0.into(),
y: 0.into(),
}
}
from_rotation(angle.rem_euclid(1.into()).change_base())
}
// Identity for rotation / scale / skew
/// Generates the matrix that represents a translation by the position
#[must_use]
pub fn from_translation(position: Vector2D<Num<i32, 8>>) -> Self {
AffineMatrix {
a: 1.into(),
b: 0.into(),
c: 0.into(),
d: 1.into(),
x: position.x,
y: position.y,
}
}
#[must_use]
/// The position fields of the matrix
pub fn position(&self) -> Vector2D<Num<i32, 8>> {
(self.x, self.y).into()
}
/// Attempts to convert the matrix to one which can be used in affine
/// backgrounds.
pub fn try_to_background(&self) -> Result<AffineMatrixBackground, OverflowError> {
Ok(AffineMatrixBackground {
a: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
b: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
c: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
d: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
x: self.a.to_raw(),
y: self.a.to_raw(),
})
}
#[must_use]
/// Converts the matrix to one which can be used in affine backgrounds
/// wrapping any value which is too large to be represented there.
pub fn to_background_wrapping(&self) -> AffineMatrixBackground {
AffineMatrixBackground {
a: self.a.to_raw() as i16,
b: self.a.to_raw() as i16,
c: self.a.to_raw() as i16,
d: self.a.to_raw() as i16,
x: self.a.to_raw(),
y: self.a.to_raw(),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[repr(C, packed(4))]
/// An affine matrix that can be used in affine backgrounds
pub struct AffineMatrixBackground {
// Internally these can be thought of as Num<i16, 8>
a: i16,
b: i16,
c: i16,
d: i16,
// These are Num<i32, 8>
x: i32,
y: i32,
}
impl TryFrom<AffineMatrix> for AffineMatrixBackground {
type Error = OverflowError;
fn try_from(value: AffineMatrix) -> Result<Self, Self::Error> {
value.try_to_background()
}
}
impl AffineMatrixBackground {
#[must_use]
/// Converts to the affine matrix that is usable in performing efficient
/// calculations.
pub fn to_affine_matrix(&self) -> AffineMatrix {
AffineMatrix {
a: Num::from_raw(self.a.into()),
b: Num::from_raw(self.b.into()),
c: Num::from_raw(self.c.into()),
d: Num::from_raw(self.d.into()),
x: Num::from_raw(self.x),
y: Num::from_raw(self.y),
}
}
}
impl From<AffineMatrixBackground> for AffineMatrix {
fn from(mat: AffineMatrixBackground) -> Self {
mat.to_affine_matrix()
}
}
impl Default for AffineMatrix {
fn default() -> Self {
AffineMatrix::identity()
}
}
impl Mul for AffineMatrix {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
AffineMatrix {
a: self.a * rhs.a + self.b + rhs.c,
b: self.a * rhs.b + self.b * rhs.d,
c: self.c * rhs.a + self.d * rhs.c,
d: self.c * rhs.b + self.d * rhs.d,
x: self.a * rhs.x + self.b * rhs.y + self.x,
y: self.c * rhs.x + self.d * rhs.y + self.y,
}
}
}
impl Mul<Num<i32, 8>> for AffineMatrix {
type Output = Self;
fn mul(self, rhs: Num<i32, 8>) -> Self::Output {
self * AffineMatrix {
a: rhs,
b: 0.into(),
c: 0.into(),
d: rhs,
x: 0.into(),
y: 0.into(),
}
}
}
impl MulAssign<Num<i32, 8>> for AffineMatrix {
fn mul_assign(&mut self, rhs: Num<i32, 8>) {
*self = *self * rhs;
}
}
impl MulAssign for AffineMatrix {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
#[cfg(test)]
mod tests {
use crate::fixnum::num;
use super::*;
#[test_case]
fn test_simple_multiply(_: &mut crate::Gba) {
let position = (20, 10).into();
let a = AffineMatrix::from_translation(position);
let b = AffineMatrix::default();
let c = a * b;
assert_eq!(c.position(), position);
let d = AffineMatrix::from_rotation::<2>(num!(0.5));
let e = a * d;
assert_eq!(e.position(), position);
assert_eq!(d * d, AffineMatrix::identity());
}
}

View file

@ -25,6 +25,7 @@ pub mod video;
pub mod blend; pub mod blend;
pub mod window; pub mod window;
pub mod affine;
mod font; mod font;
pub use font::{Font, FontLetter}; pub use font::{Font, FontLetter};