This commit is contained in:
Corwin 2022-10-08 20:32:45 +01:00
parent 5e8a50159e
commit c09c0b77f4

View file

@ -1,3 +1,23 @@
#![warn(missing_docs)]
//! # Affine matricies for the Game Boy Advance
//!
//! An affine matrix represents an affine transformation, an affine
//! transformation being one which preserves parallel lines (note that this
//! therefore cannot represent perspective seen in games like Super Mario Kart).
//! Affine matricies are used in two places on the GBA, for affine backgrounds
//! and for affine objects.
//!
//! # Linear Algebra basics
//! As a matrix, they can be manipulated using linear algebra, although you
//! shouldn't need to know linear algebra to use this apart from a few things
//!
//! If `A` and `B` are matricies, then matrix `C = A * B` represents the
//! transformation `A` performed on `B`, or alternatively `C` is transformation
//! `B` followed by transformation `A`.
//!
//! Additionally matrix multiplication is not commutative, meaning swapping the
//! order changes the result, or `A * B ≢ B * A`.
use core::{ use core::{
convert::{TryFrom, TryInto}, convert::{TryFrom, TryInto},
ops::{Mul, MulAssign}, ops::{Mul, MulAssign},
@ -8,6 +28,8 @@ use agb_fixnum::{Num, Vector2D};
type AffineMatrixElement = Num<i32, 8>; type AffineMatrixElement = Num<i32, 8>;
#[derive(Debug, PartialEq, Eq, Clone, Copy)] #[derive(Debug, PartialEq, Eq, Clone, Copy)]
/// An affine matrix stored in a way that is efficient for the GBA to perform
/// operations on. This implements multiplication.
pub struct AffineMatrix { pub struct AffineMatrix {
a: AffineMatrixElement, a: AffineMatrixElement,
b: AffineMatrixElement, b: AffineMatrixElement,
@ -18,10 +40,14 @@ pub struct AffineMatrix {
} }
#[derive(Debug, Clone, Copy, PartialEq, Eq)] #[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// The error emitted upon a conversion that could not be performed due to
/// overflowing the destination data size
pub struct OverflowError(pub(crate) ()); pub struct OverflowError(pub(crate) ());
impl AffineMatrix { impl AffineMatrix {
#[must_use] #[must_use]
/// The Identity matrix. The identity matrix can be thought of as 1 and is
/// represented by `I`. For a matrix `A`, `A ≡ A * I ≡ I * A`.
pub fn identity() -> Self { pub fn identity() -> Self {
AffineMatrix { AffineMatrix {
a: 1.into(), a: 1.into(),
@ -34,6 +60,7 @@ impl AffineMatrix {
} }
#[must_use] #[must_use]
/// Generates the matrix that represents a rotation
pub fn from_rotation<const N: usize>(angle: Num<i32, N>) -> Self { pub fn from_rotation<const N: usize>(angle: Num<i32, N>) -> Self {
fn from_rotation(angle: Num<i32, 28>) -> AffineMatrix { fn from_rotation(angle: Num<i32, 28>) -> AffineMatrix {
let cos = angle.cos().change_base(); let cos = angle.cos().change_base();
@ -52,6 +79,7 @@ impl AffineMatrix {
} }
// Identity for rotation / scale / skew // Identity for rotation / scale / skew
/// Generates the matrix that represents a translation by the position
#[must_use] #[must_use]
pub fn from_position(position: Vector2D<Num<i32, 8>>) -> Self { pub fn from_position(position: Vector2D<Num<i32, 8>>) -> Self {
AffineMatrix { AffineMatrix {
@ -65,10 +93,13 @@ impl AffineMatrix {
} }
#[must_use] #[must_use]
/// The position fields of the matrix
pub fn position(&self) -> Vector2D<Num<i32, 8>> { pub fn position(&self) -> Vector2D<Num<i32, 8>> {
(self.x, self.y).into() (self.x, self.y).into()
} }
/// Attempts to convert the matrix to one which can be used in affine
/// backgrounds.
pub fn try_to_background(&self) -> Result<AffineMatrixBackground, OverflowError> { pub fn try_to_background(&self) -> Result<AffineMatrixBackground, OverflowError> {
Ok(AffineMatrixBackground { Ok(AffineMatrixBackground {
a: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?, a: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
@ -81,6 +112,8 @@ impl AffineMatrix {
} }
#[must_use] #[must_use]
/// Converts the matrix to one which can be used in affine backgrounds
/// wrapping any value which is too large to be represented there.
pub fn to_background_wrapping(&self) -> AffineMatrixBackground { pub fn to_background_wrapping(&self) -> AffineMatrixBackground {
AffineMatrixBackground { AffineMatrixBackground {
a: self.a.to_raw() as i16, a: self.a.to_raw() as i16,
@ -95,6 +128,7 @@ impl AffineMatrix {
#[derive(Debug, PartialEq, Eq, Clone, Copy)] #[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[repr(C, packed(4))] #[repr(C, packed(4))]
/// An affine matrix that can be used in affine backgrounds
pub struct AffineMatrixBackground { pub struct AffineMatrixBackground {
// Internally these can be thought of as Num<i16, 8> // Internally these can be thought of as Num<i16, 8>
a: i16, a: i16,
@ -116,6 +150,8 @@ impl TryFrom<AffineMatrix> for AffineMatrixBackground {
impl AffineMatrixBackground { impl AffineMatrixBackground {
#[must_use] #[must_use]
/// Converts to the affine matrix that is usable in performing efficient
/// calculations.
pub fn to_affine_matrix(&self) -> AffineMatrix { pub fn to_affine_matrix(&self) -> AffineMatrix {
AffineMatrix { AffineMatrix {
a: Num::from_raw(self.a.into()), a: Num::from_raw(self.a.into()),