mirror of
https://github.com/italicsjenga/agb.git
synced 2025-01-23 15:46:33 +11:00
Merge remote-tracking branch 'upstream/master' into object-controller2
This commit is contained in:
commit
d2f5a5333a
3 changed files with 248 additions and 0 deletions
|
@ -15,6 +15,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||
- Added implementation of `HashMap.retain()`.
|
||||
- Added support for affine backgrounds (tiled modes 1 and 2) which allows for scaling, rotating etc of tiled backgrounds.
|
||||
- Added support for 256 colour backgrounds (when working with affine ones).
|
||||
- Added affine matrix module. This allows for manipulation of affine matricies for use in backgrounds and in the future objects.
|
||||
- Added support for dynamic sprites generated at runtime, some parts of this may change significantly so breaking changes are expected here.
|
||||
|
||||
### Changes
|
||||
|
|
246
agb/src/display/affine.rs
Normal file
246
agb/src/display/affine.rs
Normal file
|
@ -0,0 +1,246 @@
|
|||
#![deny(missing_docs)]
|
||||
//! # Affine matricies for the Game Boy Advance
|
||||
//!
|
||||
//! An affine matrix represents an affine transformation, an affine
|
||||
//! transformation being one which preserves parallel lines (note that this
|
||||
//! therefore cannot represent perspective seen in games like Super Mario Kart).
|
||||
//! Affine matricies are used in two places on the GBA, for affine backgrounds
|
||||
//! and for affine objects.
|
||||
//!
|
||||
//! # Linear Algebra basics
|
||||
//! As a matrix, they can be manipulated using linear algebra, although you
|
||||
//! shouldn't need to know linear algebra to use this apart from a few things
|
||||
//!
|
||||
//! If `A` and `B` are matricies, then matrix `C = A * B` represents the
|
||||
//! transformation `A` performed on `B`, or alternatively `C` is transformation
|
||||
//! `B` followed by transformation `A`.
|
||||
//!
|
||||
//! Additionally matrix multiplication is not commutative, meaning swapping the
|
||||
//! order changes the result, or `A * B ≢ B * A`.
|
||||
|
||||
use core::{
|
||||
convert::{TryFrom, TryInto},
|
||||
ops::{Mul, MulAssign},
|
||||
};
|
||||
|
||||
use agb_fixnum::{Num, Vector2D};
|
||||
|
||||
type AffineMatrixElement = Num<i32, 8>;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
/// An affine matrix stored in a way that is efficient for the GBA to perform
|
||||
/// operations on. This implements multiplication.
|
||||
pub struct AffineMatrix {
|
||||
a: AffineMatrixElement,
|
||||
b: AffineMatrixElement,
|
||||
c: AffineMatrixElement,
|
||||
d: AffineMatrixElement,
|
||||
x: AffineMatrixElement,
|
||||
y: AffineMatrixElement,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
/// The error emitted upon a conversion that could not be performed due to
|
||||
/// overflowing the destination data size
|
||||
pub struct OverflowError(pub(crate) ());
|
||||
|
||||
impl AffineMatrix {
|
||||
#[must_use]
|
||||
/// The Identity matrix. The identity matrix can be thought of as 1 and is
|
||||
/// represented by `I`. For a matrix `A`, `A ≡ A * I ≡ I * A`.
|
||||
pub fn identity() -> Self {
|
||||
AffineMatrix {
|
||||
a: 1.into(),
|
||||
b: 0.into(),
|
||||
c: 0.into(),
|
||||
d: 1.into(),
|
||||
x: 0.into(),
|
||||
y: 0.into(),
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
/// Generates the matrix that represents a rotation
|
||||
pub fn from_rotation<const N: usize>(angle: Num<i32, N>) -> Self {
|
||||
fn from_rotation(angle: Num<i32, 28>) -> AffineMatrix {
|
||||
let cos = angle.cos().change_base();
|
||||
let sin = angle.sin().change_base();
|
||||
|
||||
// This might look backwards, but the gba does texture mapping, ie a
|
||||
// point in screen base is transformed using the matrix to graphics
|
||||
// space rather than how you might conventionally think of it.
|
||||
AffineMatrix {
|
||||
a: cos,
|
||||
b: sin,
|
||||
c: -sin,
|
||||
d: cos,
|
||||
x: 0.into(),
|
||||
y: 0.into(),
|
||||
}
|
||||
}
|
||||
from_rotation(angle.rem_euclid(1.into()).change_base())
|
||||
}
|
||||
|
||||
// Identity for rotation / scale / skew
|
||||
/// Generates the matrix that represents a translation by the position
|
||||
#[must_use]
|
||||
pub fn from_translation(position: Vector2D<Num<i32, 8>>) -> Self {
|
||||
AffineMatrix {
|
||||
a: 1.into(),
|
||||
b: 0.into(),
|
||||
c: 0.into(),
|
||||
d: 1.into(),
|
||||
x: position.x,
|
||||
y: position.y,
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
/// The position fields of the matrix
|
||||
pub fn position(&self) -> Vector2D<Num<i32, 8>> {
|
||||
(self.x, self.y).into()
|
||||
}
|
||||
|
||||
/// Attempts to convert the matrix to one which can be used in affine
|
||||
/// backgrounds.
|
||||
pub fn try_to_background(&self) -> Result<AffineMatrixBackground, OverflowError> {
|
||||
Ok(AffineMatrixBackground {
|
||||
a: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
|
||||
b: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
|
||||
c: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
|
||||
d: self.a.to_raw().try_into().map_err(|_| OverflowError(()))?,
|
||||
x: self.a.to_raw(),
|
||||
y: self.a.to_raw(),
|
||||
})
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
/// Converts the matrix to one which can be used in affine backgrounds
|
||||
/// wrapping any value which is too large to be represented there.
|
||||
pub fn to_background_wrapping(&self) -> AffineMatrixBackground {
|
||||
AffineMatrixBackground {
|
||||
a: self.a.to_raw() as i16,
|
||||
b: self.a.to_raw() as i16,
|
||||
c: self.a.to_raw() as i16,
|
||||
d: self.a.to_raw() as i16,
|
||||
x: self.a.to_raw(),
|
||||
y: self.a.to_raw(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
#[repr(C, packed(4))]
|
||||
/// An affine matrix that can be used in affine backgrounds
|
||||
pub struct AffineMatrixBackground {
|
||||
// Internally these can be thought of as Num<i16, 8>
|
||||
a: i16,
|
||||
b: i16,
|
||||
c: i16,
|
||||
d: i16,
|
||||
// These are Num<i32, 8>
|
||||
x: i32,
|
||||
y: i32,
|
||||
}
|
||||
|
||||
impl TryFrom<AffineMatrix> for AffineMatrixBackground {
|
||||
type Error = OverflowError;
|
||||
|
||||
fn try_from(value: AffineMatrix) -> Result<Self, Self::Error> {
|
||||
value.try_to_background()
|
||||
}
|
||||
}
|
||||
|
||||
impl AffineMatrixBackground {
|
||||
#[must_use]
|
||||
/// Converts to the affine matrix that is usable in performing efficient
|
||||
/// calculations.
|
||||
pub fn to_affine_matrix(&self) -> AffineMatrix {
|
||||
AffineMatrix {
|
||||
a: Num::from_raw(self.a.into()),
|
||||
b: Num::from_raw(self.b.into()),
|
||||
c: Num::from_raw(self.c.into()),
|
||||
d: Num::from_raw(self.d.into()),
|
||||
x: Num::from_raw(self.x),
|
||||
y: Num::from_raw(self.y),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<AffineMatrixBackground> for AffineMatrix {
|
||||
fn from(mat: AffineMatrixBackground) -> Self {
|
||||
mat.to_affine_matrix()
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for AffineMatrix {
|
||||
fn default() -> Self {
|
||||
AffineMatrix::identity()
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for AffineMatrix {
|
||||
type Output = Self;
|
||||
fn mul(self, rhs: Self) -> Self::Output {
|
||||
AffineMatrix {
|
||||
a: self.a * rhs.a + self.b + rhs.c,
|
||||
b: self.a * rhs.b + self.b * rhs.d,
|
||||
c: self.c * rhs.a + self.d * rhs.c,
|
||||
d: self.c * rhs.b + self.d * rhs.d,
|
||||
x: self.a * rhs.x + self.b * rhs.y + self.x,
|
||||
y: self.c * rhs.x + self.d * rhs.y + self.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Num<i32, 8>> for AffineMatrix {
|
||||
type Output = Self;
|
||||
fn mul(self, rhs: Num<i32, 8>) -> Self::Output {
|
||||
self * AffineMatrix {
|
||||
a: rhs,
|
||||
b: 0.into(),
|
||||
c: 0.into(),
|
||||
d: rhs,
|
||||
x: 0.into(),
|
||||
y: 0.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign<Num<i32, 8>> for AffineMatrix {
|
||||
fn mul_assign(&mut self, rhs: Num<i32, 8>) {
|
||||
*self = *self * rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for AffineMatrix {
|
||||
fn mul_assign(&mut self, rhs: Self) {
|
||||
*self = *self * rhs;
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::fixnum::num;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test_case]
|
||||
fn test_simple_multiply(_: &mut crate::Gba) {
|
||||
let position = (20, 10).into();
|
||||
|
||||
let a = AffineMatrix::from_translation(position);
|
||||
let b = AffineMatrix::default();
|
||||
|
||||
let c = a * b;
|
||||
|
||||
assert_eq!(c.position(), position);
|
||||
|
||||
let d = AffineMatrix::from_rotation::<2>(num!(0.5));
|
||||
|
||||
let e = a * d;
|
||||
|
||||
assert_eq!(e.position(), position);
|
||||
assert_eq!(d * d, AffineMatrix::identity());
|
||||
}
|
||||
}
|
|
@ -25,6 +25,7 @@ pub mod video;
|
|||
|
||||
pub mod blend;
|
||||
pub mod window;
|
||||
pub mod affine;
|
||||
|
||||
mod font;
|
||||
pub use font::{Font, FontLetter};
|
||||
|
|
Loading…
Add table
Reference in a new issue