Merge pull request #53 from gwilymk/allow-multiple-integer-sizes-for-fixnum

Allow multiple integer sizes for fixnum
This commit is contained in:
Corwin 2021-06-05 22:06:33 +01:00 committed by GitHub
commit e8bc714d74
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 183 additions and 99 deletions

View file

@ -1,12 +1,83 @@
use core::{
cmp::{Eq, Ord, PartialEq, PartialOrd},
fmt::{Debug, Display},
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
ops::{
Add, AddAssign, BitAnd, Div, DivAssign, Mul, MulAssign, Neg, Not, Rem, RemAssign, Shl, Shr,
Sub, SubAssign,
},
};
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Num<const N: usize>(i32);
pub trait FixedWidthUnsignedInteger:
Sized
+ Copy
+ PartialOrd
+ Ord
+ PartialEq
+ Eq
+ Shl<usize, Output = Self>
+ Shr<usize, Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Not<Output = Self>
+ BitAnd<Output = Self>
+ Rem<Output = Self>
+ Div<Output = Self>
+ Mul<Output = Self>
+ From<u8>
+ Debug
+ Display
{
fn zero() -> Self;
fn one() -> Self;
fn ten() -> Self;
}
pub fn change_base<const N: usize, const M: usize>(num: Num<N>) -> Num<M> {
pub trait FixedWidthSignedInteger: FixedWidthUnsignedInteger + Neg<Output = Self> {
fn fixed_abs(self) -> Self;
}
macro_rules! fixed_width_unsigned_integer_impl {
($T: ty) => {
impl FixedWidthUnsignedInteger for $T {
fn zero() -> Self {
0
}
fn one() -> Self {
1
}
fn ten() -> Self {
10
}
}
};
}
macro_rules! fixed_width_signed_integer_impl {
($T: ty) => {
impl FixedWidthSignedInteger for $T {
fn fixed_abs(self) -> Self {
self.abs()
}
}
};
}
fixed_width_unsigned_integer_impl!(i16);
fixed_width_unsigned_integer_impl!(u16);
fixed_width_unsigned_integer_impl!(i32);
fixed_width_unsigned_integer_impl!(u32);
fixed_width_signed_integer_impl!(i16);
fixed_width_signed_integer_impl!(i32);
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Num<I: FixedWidthUnsignedInteger, const N: usize>(I);
pub type Number<const N: usize> = Num<i32, N>;
pub fn change_base<I: FixedWidthUnsignedInteger, const N: usize, const M: usize>(
num: Num<I, N>,
) -> Num<I, M> {
if N < M {
Num(num.0 << (M - N))
} else {
@ -14,15 +85,16 @@ pub fn change_base<const N: usize, const M: usize>(num: Num<N>) -> Num<M> {
}
}
impl<const N: usize> From<i32> for Num<N> {
fn from(value: i32) -> Self {
impl<I: FixedWidthUnsignedInteger, const N: usize> From<I> for Num<I, N> {
fn from(value: I) -> Self {
Num(value << N)
}
}
impl<T, const N: usize> Add<T> for Num<N>
impl<I, T, const N: usize> Add<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn add(self, rhs: T) -> Self::Output {
@ -30,18 +102,20 @@ where
}
}
impl<T, const N: usize> AddAssign<T> for Num<N>
impl<I, T, const N: usize> AddAssign<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn add_assign(&mut self, rhs: T) {
self.0 = (*self + rhs.into()).0
}
}
impl<T, const N: usize> Sub<T> for Num<N>
impl<I, T, const N: usize> Sub<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn sub(self, rhs: T) -> Self::Output {
@ -49,18 +123,20 @@ where
}
}
impl<T, const N: usize> SubAssign<T> for Num<N>
impl<I, T, const N: usize> SubAssign<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn sub_assign(&mut self, rhs: T) {
self.0 = (*self - rhs.into()).0
}
}
impl<T, const N: usize> Mul<T> for Num<N>
impl<I, T, const N: usize> Mul<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn mul(self, rhs: T) -> Self::Output {
@ -68,18 +144,20 @@ where
}
}
impl<T, const N: usize> MulAssign<T> for Num<N>
impl<I, T, const N: usize> MulAssign<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn mul_assign(&mut self, rhs: T) {
self.0 = (*self * rhs.into()).0
}
}
impl<T, const N: usize> Div<T> for Num<N>
impl<I, T, const N: usize> Div<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn div(self, rhs: T) -> Self::Output {
@ -87,18 +165,20 @@ where
}
}
impl<T, const N: usize> DivAssign<T> for Num<N>
impl<I, T, const N: usize> DivAssign<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn div_assign(&mut self, rhs: T) {
self.0 = (*self / rhs.into()).0
}
}
impl<T, const N: usize> Rem<T> for Num<N>
impl<I, T, const N: usize> Rem<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn rem(self, modulus: T) -> Self::Output {
@ -106,45 +186,38 @@ where
}
}
impl<T, const N: usize> RemAssign<T> for Num<N>
impl<I, T, const N: usize> RemAssign<T> for Num<I, N>
where
T: Into<Num<N>>,
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn rem_assign(&mut self, modulus: T) {
self.0 = (*self % modulus).0
}
}
impl<const N: usize> Neg for Num<N> {
impl<I: FixedWidthSignedInteger, const N: usize> Neg for Num<I, N> {
type Output = Self;
fn neg(self) -> Self::Output {
Num(-self.0)
}
}
impl<const N: usize> Num<N> {
pub const fn max() -> Self {
Num(i32::MAX)
}
pub const fn min() -> Self {
Num(i32::MIN)
}
pub const fn from_raw(n: i32) -> Self {
impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
pub fn from_raw(n: I) -> Self {
Num(n)
}
pub const fn to_raw(&self) -> i32 {
pub fn to_raw(self) -> I {
self.0
}
pub const fn trunc(&self) -> i32 {
let fractional_part = self.0 & ((1 << N) - 1);
pub fn trunc(&self) -> I {
let fractional_part = self.0 & ((I::one() << N) - I::one());
let self_as_int = self.0 >> N;
if self_as_int < 0 && fractional_part != 0 {
self_as_int + 1
if self_as_int < I::zero() && fractional_part != I::zero() {
self_as_int + I::one()
} else {
self_as_int
}
@ -152,8 +225,8 @@ impl<const N: usize> Num<N> {
pub fn rem_euclid(&self, rhs: Self) -> Self {
let r = *self % rhs;
if r < 0.into() {
if rhs < 0.into() {
if r < I::zero().into() {
if rhs < I::zero().into() {
r - rhs
} else {
r + rhs
@ -163,48 +236,57 @@ impl<const N: usize> Num<N> {
}
}
pub const fn floor(&self) -> i32 {
pub fn floor(&self) -> I {
self.0 >> N
}
pub const fn abs(self) -> Self {
Num(self.0.abs())
pub fn new(integral: I) -> Self {
Self(integral << N)
}
}
impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
pub fn abs(self) -> Self {
Num(self.0.fixed_abs())
}
/// domain of [0, 1].
/// see https://github.com/tarcieri/micromath/blob/24584465b48ff4e87cffb709c7848664db896b4f/src/float/cos.rs#L226
pub fn cos(self) -> Self {
let one: Self = 1.into();
let one: Self = I::one().into();
let mut x = self;
x -= one / 4 + (x + one / 4).floor();
x *= (x.abs() - one / 2) * 16;
x += x * (x.abs() - 1) * 9 / 40;
let four: I = 4.into();
let two: I = 2.into();
let sixteen: I = 16.into();
let nine: I = 9.into();
let forty: I = 40.into();
x -= one / four + (x + one / four).floor();
x *= (x.abs() - one / two) * sixteen;
x += x * (x.abs() - one) * (nine / forty);
x
}
pub fn sin(self) -> Self {
let one: Self = 1.into();
(self - one / 4).cos()
}
pub const fn new(integral: i32) -> Self {
Self(integral << N)
let one: Self = I::one().into();
let four: I = 4.into();
(self - one / four).cos()
}
}
#[test_case]
fn test_numbers(_gba: &mut super::Gba) {
// test addition
let n: Num<8> = 1.into();
let n: Num<i32, 8> = 1.into();
assert_eq!(n + 2, 3.into(), "testing that 1 + 2 == 3");
// test multiplication
let n: Num<8> = 5.into();
let n: Num<i32, 8> = 5.into();
assert_eq!(n * 3, 15.into(), "testing that 5 * 3 == 15");
// test division
let n: Num<8> = 30.into();
let p: Num<8> = 3.into();
let n: Num<i32, 8> = 30.into();
let p: Num<i32, 8> = 3.into();
assert_eq!(n / 20, p / 2, "testing that 30 / 20 == 3 / 2");
assert_ne!(n, p, "testing that 30 != 3");
@ -212,20 +294,20 @@ fn test_numbers(_gba: &mut super::Gba) {
#[test_case]
fn test_division_by_one(_gba: &mut super::Gba) {
let one: Num<8> = 1.into();
let one: Num<i32, 8> = 1.into();
for i in -40..40 {
let n: Num<8> = i.into();
let n: Num<i32, 8> = i.into();
assert_eq!(n / one, n);
}
}
#[test_case]
fn test_division_and_multiplication_by_16(_gba: &mut super::Gba) {
let sixteen: Num<8> = 16.into();
let sixteen: Num<i32, 8> = 16.into();
for i in -40..40 {
let n: Num<8> = i.into();
let n: Num<i32, 8> = i.into();
let m = n / sixteen;
assert_eq!(m * sixteen, n);
@ -234,12 +316,12 @@ fn test_division_and_multiplication_by_16(_gba: &mut super::Gba) {
#[test_case]
fn test_division_by_2_and_15(_gba: &mut super::Gba) {
let two: Num<8> = 2.into();
let fifteen: Num<8> = 15.into();
let thirty: Num<8> = 30.into();
let two: Num<i32, 8> = 2.into();
let fifteen: Num<i32, 8> = 15.into();
let thirty: Num<i32, 8> = 30.into();
for i in -128..128 {
let n: Num<8> = i.into();
let n: Num<i32, 8> = i.into();
assert_eq!(n / two / fifteen, n / thirty);
assert_eq!(n / fifteen / two, n / thirty);
@ -248,8 +330,8 @@ fn test_division_by_2_and_15(_gba: &mut super::Gba) {
#[test_case]
fn test_change_base(_gba: &mut super::Gba) {
let two: Num<9> = 2.into();
let three: Num<4> = 3.into();
let two: Num<i32, 9> = 2.into();
let three: Num<i32, 4> = 3.into();
assert_eq!(two + change_base(three), 5.into());
assert_eq!(three + change_base(two), 5.into());
@ -264,7 +346,7 @@ fn test_rem_returns_sensible_values_for_integers(_gba: &mut super::Gba) {
}
let i_rem_j_normally = i % j;
let i_fixnum: Num<8> = i.into();
let i_fixnum: Num<i32, 8> = i.into();
assert_eq!(i_fixnum % j, i_rem_j_normally.into());
}
@ -273,7 +355,7 @@ fn test_rem_returns_sensible_values_for_integers(_gba: &mut super::Gba) {
#[test_case]
fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
let one: Num<8> = 1.into();
let one: Num<i32, 8> = 1.into();
let third = one / 3;
for i in -50..50 {
@ -283,10 +365,10 @@ fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
}
// full calculation in the normal way
let x: Num<8> = third + i;
let y: Num<8> = j.into();
let x: Num<i32, 8> = third + i;
let y: Num<i32, 8> = j.into();
let truncated_division: Num<8> = (x / y).trunc().into();
let truncated_division: Num<i32, 8> = (x / y).trunc().into();
let remainder = x - truncated_division * y;
@ -297,7 +379,7 @@ fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
#[test_case]
fn test_rem_euclid_is_always_positive_and_sensible(_gba: &mut super::Gba) {
let one: Num<8> = 1.into();
let one: Num<i32, 8> = 1.into();
let third = one / 3;
for i in -50..50 {
@ -306,13 +388,8 @@ fn test_rem_euclid_is_always_positive_and_sensible(_gba: &mut super::Gba) {
continue;
}
// full calculation in the normal way
let x: Num<8> = third + i;
let y: Num<8> = j.into();
let truncated_division: Num<8> = (x / y).trunc().into();
let remainder = x - truncated_division * y;
let x: Num<i32, 8> = third + i;
let y: Num<i32, 8> = j.into();
let rem_euclid = x.rem_euclid(y);
assert!(rem_euclid > 0.into());
@ -320,29 +397,32 @@ fn test_rem_euclid_is_always_positive_and_sensible(_gba: &mut super::Gba) {
}
}
impl<const N: usize> Display for Num<N> {
impl<I: FixedWidthUnsignedInteger, const N: usize> Display for Num<I, N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let integral = self.0 >> N;
let mask: u32 = (1 << N) - 1;
let mask: I = (I::one() << N) - I::one();
write!(f, "{}", integral)?;
let mut fractional = self.0 as u32 & mask;
if fractional & mask != 0 {
let mut fractional = self.0 & mask;
if fractional & mask != I::zero() {
write!(f, ".")?;
}
while fractional & mask != 0 {
fractional *= 10;
while fractional & mask != I::zero() {
fractional = fractional * I::ten();
write!(f, "{}", (fractional & !mask) >> N)?;
fractional &= mask;
fractional = fractional & mask;
}
Ok(())
}
}
impl<const N: usize> Debug for Num<N> {
impl<I: FixedWidthUnsignedInteger, const N: usize> Debug for Num<I, N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "Num<{}>({})", N, self)
use core::any::type_name;
write!(f, "Num<{}, {}>({})", type_name::<I>(), N, self)
}
}

View file

@ -106,7 +106,11 @@ pub fn arc_tan2(x: i16, y: i32) -> i16 {
result
}
pub fn affine_matrix(x_scale: Num<8>, y_scale: Num<8>, rotation: u8) -> AffineMatrixAttributes {
pub fn affine_matrix(
x_scale: Num<i16, 8>,
y_scale: Num<i16, 8>,
rotation: u8,
) -> AffineMatrixAttributes {
let mut result = AffineMatrixAttributes {
p_a: 0,
p_b: 0,
@ -125,8 +129,8 @@ pub fn affine_matrix(x_scale: Num<8>, y_scale: Num<8>, rotation: u8) -> AffineMa
let rotation_for_input = (rotation as u16) << 8;
let input = Input {
y_scale: x_scale.to_raw() as i16,
x_scale: y_scale.to_raw() as i16,
y_scale: x_scale.to_raw(),
x_scale: y_scale.to_raw(),
rotation: rotation_for_input,
};
@ -145,9 +149,9 @@ pub fn affine_matrix(x_scale: Num<8>, y_scale: Num<8>, rotation: u8) -> AffineMa
#[test_case]
fn affine(_gba: &mut crate::Gba) {
// expect identity matrix
let one: Num<8> = 1.into();
let one: Num<i16, 8> = 1.into();
let aff = affine_matrix(one, one, 0);
assert_eq!(aff.p_a, one.to_raw() as i16);
assert_eq!(aff.p_d, one.to_raw() as i16);
assert_eq!(aff.p_a, one.to_raw());
assert_eq!(aff.p_d, one.to_raw());
}