mirror of
https://github.com/italicsjenga/agb.git
synced 2024-12-24 00:31:34 +11:00
Merge pull request #52 from corwinkuiper/number-trig
implement trig functions
This commit is contained in:
commit
ec87adceb2
|
@ -139,7 +139,7 @@ impl<const N: usize> Num<N> {
|
|||
self.0
|
||||
}
|
||||
|
||||
pub const fn int(&self) -> i32 {
|
||||
pub const fn trunc(&self) -> i32 {
|
||||
let fractional_part = self.0 & ((1 << N) - 1);
|
||||
let self_as_int = self.0 >> N;
|
||||
|
||||
|
@ -163,6 +163,30 @@ impl<const N: usize> Num<N> {
|
|||
}
|
||||
}
|
||||
|
||||
pub const fn floor(&self) -> i32 {
|
||||
self.0 >> N
|
||||
}
|
||||
|
||||
pub const fn abs(self) -> Self {
|
||||
Num(self.0.abs())
|
||||
}
|
||||
|
||||
/// domain of [0, 1].
|
||||
/// see https://github.com/tarcieri/micromath/blob/24584465b48ff4e87cffb709c7848664db896b4f/src/float/cos.rs#L226
|
||||
pub fn cos(self) -> Self {
|
||||
let one: Self = 1.into();
|
||||
let mut x = self;
|
||||
x -= one / 4 + (x + one / 4).floor();
|
||||
x *= (x.abs() - one / 2) * 16;
|
||||
x += x * (x.abs() - 1) * 9 / 40;
|
||||
x
|
||||
}
|
||||
|
||||
pub fn sin(self) -> Self {
|
||||
let one: Self = 1.into();
|
||||
(self - one / 4).cos()
|
||||
}
|
||||
|
||||
pub const fn new(integral: i32) -> Self {
|
||||
Self(integral << N)
|
||||
}
|
||||
|
@ -262,7 +286,7 @@ fn test_rem_returns_sensible_values_for_non_integers(_gba: &mut super::Gba) {
|
|||
let x: Num<8> = third + i;
|
||||
let y: Num<8> = j.into();
|
||||
|
||||
let truncated_division: Num<8> = (x / y).int().into();
|
||||
let truncated_division: Num<8> = (x / y).trunc().into();
|
||||
|
||||
let remainder = x - truncated_division * y;
|
||||
|
||||
|
@ -286,7 +310,7 @@ fn test_rem_euclid_is_always_positive_and_sensible(_gba: &mut super::Gba) {
|
|||
let x: Num<8> = third + i;
|
||||
let y: Num<8> = j.into();
|
||||
|
||||
let truncated_division: Num<8> = (x / y).int().into();
|
||||
let truncated_division: Num<8> = (x / y).trunc().into();
|
||||
|
||||
let remainder = x - truncated_division * y;
|
||||
|
||||
|
|
Loading…
Reference in a new issue