agb/agb-hashmap/src/lib.rs
2023-04-23 17:43:30 +01:00

1459 lines
42 KiB
Rust

//! A lot of the documentation for this module was copied straight out of the rust
//! standard library. The implementation however is not.
#![no_std]
#![feature(allocator_api)]
#![deny(clippy::all)]
#![deny(missing_docs)]
extern crate alloc;
use alloc::{alloc::Global, vec::Vec};
use core::{
alloc::Allocator,
hash::{BuildHasher, BuildHasherDefault, Hash, Hasher},
iter::FromIterator,
mem::{self, MaybeUninit},
ops::Index,
ptr,
};
use rustc_hash::FxHasher;
type HashType = u32;
// # Robin Hood Hash Tables
//
// The problem with regular hash tables where failing to find a slot for a specific
// key will result in a linear search for the first free slot is that often these
// slots can end up being quite far away from the original chosen location in fuller
// hash tables. In Java, the hash table will resize when it is more than 2 thirds full
// which is quite wasteful in terms of space. Robin Hood hash tables can be much
// fuller before needing to resize and also keeps search times lower.
//
// The key concept is to keep the distance from the initial bucket chosen for a given
// key to a minimum. We shall call this distance the "distance to the initial bucket"
// or DIB for short. With each key - value pair, we store its DIB. When inserting
// a value into the hash table, we check to see if there is an element in the initial
// bucket. If there is, we move onto the next value. Then, we check to see if there
// is already a value there and if there is, we check its DIB. If our DIB is greater
// than or equal to the DIB of the value that is already there, we swap the working
// value and the current entry. This continues until an empty slot is found.
//
// Using this technique, the average DIB is kept fairly low which decreases search
// times. As a simple search time optimisation, the maximum DIB is kept track of
// and so we will only need to search as far as that in order to know whether or
// not a given element is in the hash table.
//
// # Deletion
//
// Special mention is given to deletion. Unfortunately, the maximum DIB is not
// kept track of after deletion, since we would not only need to keep track of
// the maximum DIB but also the number of elements which have that maximum DIB.
//
// In order to delete an element, we search to see if it exists. If it does,
// we remove that element and then iterate through the array from that point
// and move each element back one space (updating its DIB). If the DIB of the
// element we are trying to remove is 0, then we stop this algorithm.
//
// This means that deletion will lower the average DIB of the elements and
// keep searching and insertion fast.
//
// # Rehashing
//
// Currently, no incremental rehashing takes place. Once the HashMap becomes
// more than 85% full (this value may change when I do some benchmarking),
// a new list is allocated with double the capacity and the entire node list
// is migrated.
/// A hash map implemented very simply using robin hood hashing.
///
/// `HashMap` uses `FxHasher` internally, which is a very fast hashing algorithm used
/// by rustc and firefox in non-adversarial places. It is incredibly fast, and good
/// enough for most cases.
///
/// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although this
/// can be frequently achieved by using `#[derive(PartialEq, Eq, Hash)]`. If you
/// implement these yourself, it is important that the following property holds:
///
/// `k1 == k2 => hash(k1) == hash(k2)`
///
/// It is a logic error for the key to be modified in such a way that the key's hash, as
/// determined by the [`Hash`] trait, or its equality as determined by the [`Eq`] trait,
/// changes while it is in the map. The behaviour for such a logic error is not specified,
/// but will not result in undefined behaviour. This could include panics, incorrect results,
/// aborts, memory leaks and non-termination.
///
/// The API surface provided is incredibly similar to the
/// [`std::collections::HashMap`](https://doc.rust-lang.org/std/collections/struct.HashMap.html)
/// implementation with fewer guarantees, and better optimised for the GameBoy Advance.
///
/// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
pub struct HashMap<K, V, ALLOCATOR: Allocator = Global> {
nodes: NodeStorage<K, V, ALLOCATOR>,
hasher: BuildHasherDefault<FxHasher>,
}
/// Trait for allocators that are clonable, blanket implementation for all types that implement Allocator and Clone
pub trait ClonableAllocator: Allocator + Clone {}
impl<T: Allocator + Clone> ClonableAllocator for T {}
impl<K, V> HashMap<K, V> {
/// Creates a `HashMap`
#[must_use]
pub fn new() -> Self {
Self::new_in(Global)
}
/// Creates an empty `HashMap` with specified internal size. The size must be a power of 2
#[must_use]
pub fn with_size(size: usize) -> Self {
Self::with_size_in(size, Global)
}
/// Creates an empty `HashMap` which can hold at least `capacity` elements before resizing. The actual
/// internal size may be larger as it must be a power of 2
#[must_use]
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_in(capacity, Global)
}
}
impl<K, V, ALLOCATOR: ClonableAllocator> HashMap<K, V, ALLOCATOR> {
#[must_use]
/// Creates an empty `HashMap` with specified internal size using the
/// specified allocator. The size must be a power of 2
pub fn with_size_in(size: usize, alloc: ALLOCATOR) -> Self {
Self {
nodes: NodeStorage::with_size_in(size, alloc),
hasher: Default::default(),
}
}
#[must_use]
/// Creates a `HashMap` with a specified allocator
pub fn new_in(alloc: ALLOCATOR) -> Self {
Self::with_size_in(16, alloc)
}
/// Returns a reference to the underlying allocator
pub fn allocator(&self) -> &ALLOCATOR {
self.nodes.allocator()
}
/// Creates an empty `HashMap` which can hold at least `capacity` elements before resizing. The actual
/// internal size may be larger as it must be a power of 2
#[must_use]
pub fn with_capacity_in(capacity: usize, alloc: ALLOCATOR) -> Self {
for i in 0..32 {
let attempted_size = 1usize << i;
if number_before_resize(attempted_size) > capacity {
return Self::with_size_in(attempted_size, alloc);
}
}
panic!(
"Failed to come up with a size which satisfies capacity {}",
capacity
);
}
/// Returns the number of elements in the map
#[must_use]
pub fn len(&self) -> usize {
self.nodes.len()
}
/// Returns the number of elements the map can hold
#[must_use]
pub fn capacity(&self) -> usize {
self.nodes.capacity()
}
/// An iterator visiting all keys in an arbitrary order
pub fn keys(&self) -> impl Iterator<Item = &'_ K> {
self.iter().map(|(k, _)| k)
}
/// An iterator visiting all values in an arbitrary order
pub fn values(&self) -> impl Iterator<Item = &'_ V> {
self.iter().map(|(_, v)| v)
}
/// An iterator visiting all values in an arbitrary order allowing for mutation
pub fn values_mut(&mut self) -> impl Iterator<Item = &'_ mut V> {
self.iter_mut().map(|(_, v)| v)
}
/// Removes all elements from the map
pub fn clear(&mut self) {
self.nodes =
NodeStorage::with_size_in(self.nodes.backing_vec_size(), self.allocator().clone());
}
/// An iterator visiting all key-value pairs in an arbitrary order
pub fn iter(&self) -> impl Iterator<Item = (&'_ K, &'_ V)> {
Iter {
map: self,
at: 0,
num_found: 0,
}
}
/// An iterator visiting all key-value pairs in an arbitrary order, with mutable references to the values
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&'_ K, &'_ mut V)> {
self.nodes.nodes.iter_mut().filter_map(Node::key_value_mut)
}
/// Retains only the elements specified by the predicate `f`.
pub fn retain<F>(&mut self, f: F)
where
F: FnMut(&K, &mut V) -> bool,
{
self.nodes.retain(f);
}
/// Returns `true` if the map contains no elements
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
fn resize(&mut self, new_size: usize) {
assert!(
new_size >= self.nodes.backing_vec_size(),
"Can only increase the size of a hash map"
);
if new_size == self.nodes.backing_vec_size() {
return;
}
self.nodes = self.nodes.resized_to(new_size);
}
}
impl<K, V> Default for HashMap<K, V> {
fn default() -> Self {
Self::new()
}
}
const fn fast_mod(len: usize, hash: HashType) -> usize {
debug_assert!(len.is_power_of_two(), "Length must be a power of 2");
(hash as usize) & (len - 1)
}
impl<K, V, ALLOCATOR: ClonableAllocator> HashMap<K, V, ALLOCATOR>
where
K: Eq + Hash,
{
/// Inserts a key-value pair into the map.
///
/// If the map did not have this key present, [`None`] is returned.
///
/// If the map did have this key present, the value is updated and the old value
/// is returned. The key is not updated, which matters for types that can be `==`
/// without being identical.
pub fn insert(&mut self, key: K, value: V) -> Option<V> {
let hash = self.hash(&key);
if let Some(location) = self.nodes.location(&key, hash) {
Some(self.nodes.replace_at_location(location, key, value))
} else {
if self.nodes.capacity() <= self.len() {
self.resize(self.nodes.backing_vec_size() * 2);
}
self.nodes.insert_new(key, value, hash);
None
}
}
fn insert_and_get(&mut self, key: K, value: V) -> &'_ mut V {
let hash = self.hash(&key);
let location = if let Some(location) = self.nodes.location(&key, hash) {
self.nodes.replace_at_location(location, key, value);
location
} else {
if self.nodes.capacity() <= self.len() {
self.resize(self.nodes.backing_vec_size() * 2);
}
self.nodes.insert_new(key, value, hash)
};
self.nodes.nodes[location].value_mut().unwrap()
}
/// Returns `true` if the map contains a value for the specified key.
pub fn contains_key(&self, k: &K) -> bool {
let hash = self.hash(k);
self.nodes.location(k, hash).is_some()
}
/// Returns the key-value pair corresponding to the supplied key
pub fn get_key_value(&self, key: &K) -> Option<(&K, &V)> {
let hash = self.hash(key);
self.nodes
.location(key, hash)
.and_then(|location| self.nodes.nodes[location].key_value_ref())
}
/// Returns a reference to the value corresponding to the key. Returns [`None`] if there is
/// no element in the map with the given key.
pub fn get(&self, key: &K) -> Option<&V> {
self.get_key_value(key).map(|(_, v)| v)
}
/// Returns a mutable reference to the value corresponding to the key. Return [`None`] if
/// there is no element in the map with the given key.
pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
let hash = self.hash(key);
if let Some(location) = self.nodes.location(key, hash) {
self.nodes.nodes[location].value_mut()
} else {
None
}
}
/// Removes the given key from the map. Returns the current value if it existed, or [`None`]
/// if it did not.
pub fn remove(&mut self, key: &K) -> Option<V> {
let hash = self.hash(key);
self.nodes
.location(key, hash)
.map(|location| self.nodes.remove_from_location(location))
}
}
impl<K, V, ALLOCATOR: ClonableAllocator> HashMap<K, V, ALLOCATOR>
where
K: Hash,
{
fn hash(&self, key: &K) -> HashType {
let mut hasher = self.hasher.build_hasher();
key.hash(&mut hasher);
hasher.finish() as HashType
}
}
/// An iterator over entries of a [`HashMap`]
///
/// This struct is created using the `into_iter()` method on [`HashMap`]. See its
/// documentation for more.
pub struct Iter<'a, K: 'a, V: 'a, ALLOCATOR: ClonableAllocator> {
map: &'a HashMap<K, V, ALLOCATOR>,
at: usize,
num_found: usize,
}
impl<'a, K, V, ALLOCATOR: ClonableAllocator> Iterator for Iter<'a, K, V, ALLOCATOR> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.at >= self.map.nodes.backing_vec_size() {
return None;
}
let node = &self.map.nodes.nodes[self.at];
self.at += 1;
if node.has_value() {
self.num_found += 1;
return Some((node.key_ref().unwrap(), node.value_ref().unwrap()));
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.map.len() - self.num_found,
Some(self.map.len() - self.num_found),
)
}
}
impl<'a, K, V, ALLOCATOR: ClonableAllocator> IntoIterator for &'a HashMap<K, V, ALLOCATOR> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V, ALLOCATOR>;
fn into_iter(self) -> Self::IntoIter {
Iter {
map: self,
at: 0,
num_found: 0,
}
}
}
/// An iterator over entries of a [`HashMap`]
///
/// This struct is created using the `into_iter()` method on [`HashMap`] as part of its implementation
/// of the IntoIterator trait.
pub struct IterOwned<K, V, ALLOCATOR: Allocator = Global> {
map: HashMap<K, V, ALLOCATOR>,
at: usize,
num_found: usize,
}
impl<K, V, ALLOCATOR: ClonableAllocator> Iterator for IterOwned<K, V, ALLOCATOR> {
type Item = (K, V);
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.at >= self.map.nodes.backing_vec_size() {
return None;
}
let maybe_kv = self.map.nodes.nodes[self.at].take_key_value();
self.at += 1;
if let Some((k, v, _)) = maybe_kv {
self.num_found += 1;
return Some((k, v));
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.map.len() - self.num_found,
Some(self.map.len() - self.num_found),
)
}
}
/// An iterator over entries of a [`HashMap`]
///
/// This struct is created using the `into_iter()` method on [`HashMap`] as part of its implementation
/// of the IntoIterator trait.
impl<K, V, ALLOCATOR: ClonableAllocator> IntoIterator for HashMap<K, V, ALLOCATOR> {
type Item = (K, V);
type IntoIter = IterOwned<K, V, ALLOCATOR>;
fn into_iter(self) -> Self::IntoIter {
IterOwned {
map: self,
at: 0,
num_found: 0,
}
}
}
/// A view into an occupied entry in a `HashMap`. This is part of the [`Entry`] enum.
pub struct OccupiedEntry<'a, K: 'a, V: 'a, ALLOCATOR: Allocator> {
key: K,
map: &'a mut HashMap<K, V, ALLOCATOR>,
location: usize,
}
impl<'a, K: 'a, V: 'a, ALLOCATOR: ClonableAllocator> OccupiedEntry<'a, K, V, ALLOCATOR> {
/// Gets a reference to the key in the entry.
pub fn key(&self) -> &K {
&self.key
}
/// Take the ownership of the key and value from the map.
pub fn remove_entry(self) -> (K, V) {
let old_value = self.map.nodes.remove_from_location(self.location);
(self.key, old_value)
}
/// Gets a reference to the value in the entry.
pub fn get(&self) -> &V {
self.map.nodes.nodes[self.location].value_ref().unwrap()
}
/// Gets a mutable reference to the value in the entry.
///
/// If you need a reference to the `OccupiedEntry` which may outlive the destruction
/// of the `Entry` value, see [`into_mut`].
///
/// [`into_mut`]: Self::into_mut
pub fn get_mut(&mut self) -> &mut V {
self.map.nodes.nodes[self.location].value_mut().unwrap()
}
/// Converts the `OccupiedEntry` into a mutable reference to the value in the entry with
/// a lifetime bound to the map itself.
///
/// If you need multiple references to the `OccupiedEntry`, see [`get_mut`].
///
/// [`get_mut`]: Self::get_mut
pub fn into_mut(self) -> &'a mut V {
self.map.nodes.nodes[self.location].value_mut().unwrap()
}
/// Sets the value of the entry and returns the entry's old value.
pub fn insert(&mut self, value: V) -> V {
self.map.nodes.nodes[self.location].replace_value(value)
}
/// Takes the value out of the entry and returns it.
pub fn remove(self) -> V {
self.map.nodes.remove_from_location(self.location)
}
}
/// A view into a vacant entry in a `HashMap`. It is part of the [`Entry`] enum.
pub struct VacantEntry<'a, K: 'a, V: 'a, ALLOCATOR: Allocator> {
key: K,
map: &'a mut HashMap<K, V, ALLOCATOR>,
}
impl<'a, K: 'a, V: 'a, ALLOCATOR: ClonableAllocator> VacantEntry<'a, K, V, ALLOCATOR> {
/// Gets a reference to the key that would be used when inserting a value through `VacantEntry`
pub fn key(&self) -> &K {
&self.key
}
/// Take ownership of the key
pub fn into_key(self) -> K {
self.key
}
/// Sets the value of the entry with the `VacantEntry`'s key and returns a mutable reference to it.
pub fn insert(self, value: V) -> &'a mut V
where
K: Hash + Eq,
{
self.map.insert_and_get(self.key, value)
}
}
/// A view into a single entry in a map, which may be vacant or occupied.
///
/// This is constructed using the [`entry`] method on [`HashMap`]
///
/// [`entry`]: HashMap::entry()
pub enum Entry<'a, K: 'a, V: 'a, ALLOCATOR: Allocator = Global> {
/// An occupied entry
Occupied(OccupiedEntry<'a, K, V, ALLOCATOR>),
/// A vacant entry
Vacant(VacantEntry<'a, K, V, ALLOCATOR>),
}
impl<'a, K, V, ALLOCATOR: ClonableAllocator> Entry<'a, K, V, ALLOCATOR>
where
K: Hash + Eq,
{
/// Ensures a value is in the entry by inserting the given value, and returns a mutable
/// reference to the value in the entry.
pub fn or_insert(self, value: V) -> &'a mut V {
match self {
Entry::Occupied(e) => e.into_mut(),
Entry::Vacant(e) => e.insert(value),
}
}
/// Ensures a value is in the entry by inserting the result of the function if empty, and
/// returns a mutable reference to the value in the entry.
pub fn or_insert_with<F>(self, f: F) -> &'a mut V
where
F: FnOnce() -> V,
{
match self {
Entry::Occupied(e) => e.into_mut(),
Entry::Vacant(e) => e.insert(f()),
}
}
/// Ensures a value is in the entry by inserting the result of the function if empty, and
/// returns a mutable reference to the value in the entry. This method allows for key-derived
/// values for insertion by providing the function with a reference to the key.
///
/// The reference to the moved key is provided so that cloning or copying the key is unnecessary,
/// unlike with `.or_insert_with(|| ...)`.
pub fn or_insert_with_key<F>(self, f: F) -> &'a mut V
where
F: FnOnce(&K) -> V,
{
match self {
Entry::Occupied(e) => e.into_mut(),
Entry::Vacant(e) => {
let value = f(&e.key);
e.insert(value)
}
}
}
/// Provides in-place mutable access to an occupied entry before any potential inserts
/// into the map.
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut V),
{
match self {
Entry::Occupied(mut e) => {
f(e.get_mut());
Entry::Occupied(e)
}
Entry::Vacant(e) => Entry::Vacant(e),
}
}
/// Ensures a value is in th entry by inserting the default value if empty. Returns a
/// mutable reference to the value in the entry.
pub fn or_default(self) -> &'a mut V
where
V: Default,
{
match self {
Entry::Occupied(e) => e.into_mut(),
Entry::Vacant(e) => e.insert(Default::default()),
}
}
/// Returns a reference to this entry's key.
pub fn key(&self) -> &K {
match self {
Entry::Occupied(e) => &e.key,
Entry::Vacant(e) => &e.key,
}
}
}
impl<K, V, ALLOCATOR: ClonableAllocator> HashMap<K, V, ALLOCATOR>
where
K: Hash + Eq,
{
/// Gets the given key's corresponding entry in the map for in-place manipulation.
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, ALLOCATOR> {
let hash = self.hash(&key);
let location = self.nodes.location(&key, hash);
if let Some(location) = location {
Entry::Occupied(OccupiedEntry {
key,
location,
map: self,
})
} else {
Entry::Vacant(VacantEntry { key, map: self })
}
}
}
impl<K, V> FromIterator<(K, V)> for HashMap<K, V>
where
K: Eq + Hash,
{
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
let mut map = HashMap::new();
map.extend(iter);
map
}
}
impl<K, V> Extend<(K, V)> for HashMap<K, V>
where
K: Eq + Hash,
{
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
for (k, v) in iter {
self.insert(k, v);
}
}
}
impl<K, V, ALLOCATOR: ClonableAllocator> Index<&K> for HashMap<K, V, ALLOCATOR>
where
K: Eq + Hash,
{
type Output = V;
fn index(&self, key: &K) -> &V {
self.get(key).expect("no entry found for key")
}
}
impl<K, V, ALLOCATOR: ClonableAllocator> Index<K> for HashMap<K, V, ALLOCATOR>
where
K: Eq + Hash,
{
type Output = V;
fn index(&self, key: K) -> &V {
self.get(&key).expect("no entry found for key")
}
}
const fn number_before_resize(capacity: usize) -> usize {
capacity * 85 / 100
}
struct NodeStorage<K, V, ALLOCATOR: Allocator = Global> {
nodes: Vec<Node<K, V>, ALLOCATOR>,
max_distance_to_initial_bucket: i32,
number_of_items: usize,
max_number_before_resize: usize,
}
impl<K, V, ALLOCATOR: ClonableAllocator> NodeStorage<K, V, ALLOCATOR> {
fn with_size_in(capacity: usize, alloc: ALLOCATOR) -> Self {
assert!(capacity.is_power_of_two(), "Capacity must be a power of 2");
let mut nodes = Vec::with_capacity_in(capacity, alloc);
for _ in 0..capacity {
nodes.push(Default::default());
}
Self {
nodes,
max_distance_to_initial_bucket: 0,
number_of_items: 0,
max_number_before_resize: number_before_resize(capacity),
}
}
fn allocator(&self) -> &ALLOCATOR {
self.nodes.allocator()
}
fn capacity(&self) -> usize {
self.max_number_before_resize
}
fn backing_vec_size(&self) -> usize {
self.nodes.len()
}
fn len(&self) -> usize {
self.number_of_items
}
fn insert_new(&mut self, key: K, value: V, hash: HashType) -> usize {
debug_assert!(
self.capacity() > self.len(),
"Do not have space to insert into len {} with {}",
self.backing_vec_size(),
self.len()
);
let mut new_node = Node::new_with(key, value, hash);
let mut inserted_location = usize::MAX;
loop {
let location = fast_mod(
self.backing_vec_size(),
new_node.hash + new_node.distance() as HashType,
);
let current_node = &mut self.nodes[location];
if current_node.has_value() {
if current_node.distance() <= new_node.distance() {
mem::swap(&mut new_node, current_node);
if inserted_location == usize::MAX {
inserted_location = location;
}
}
} else {
self.nodes[location] = new_node;
if inserted_location == usize::MAX {
inserted_location = location;
}
break;
}
new_node.increment_distance();
self.max_distance_to_initial_bucket =
new_node.distance().max(self.max_distance_to_initial_bucket);
}
self.number_of_items += 1;
inserted_location
}
fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&K, &mut V) -> bool,
{
let num_nodes = self.nodes.len();
let mut i = 0;
while i < num_nodes {
let node = &mut self.nodes[i];
if let Some((k, v)) = node.key_value_mut() {
if !f(k, v) {
self.remove_from_location(i);
// Need to continue before adding 1 to i because remove from location could
// put the element which was next into the ith location in the nodes array,
// so we need to check if that one needs removing too.
continue;
}
}
i += 1;
}
}
fn remove_from_location(&mut self, location: usize) -> V {
let mut current_location = location;
self.number_of_items -= 1;
loop {
let next_location =
fast_mod(self.backing_vec_size(), (current_location + 1) as HashType);
// if the next node is empty, or the next location has 0 distance to initial bucket then
// we can clear the current node
if !self.nodes[next_location].has_value() || self.nodes[next_location].distance() == 0 {
return self.nodes[current_location].take_key_value().unwrap().1;
}
self.nodes.swap(current_location, next_location);
self.nodes[current_location].decrement_distance();
current_location = next_location;
}
}
fn location(&self, key: &K, hash: HashType) -> Option<usize>
where
K: Eq,
{
for distance_to_initial_bucket in 0..(self.max_distance_to_initial_bucket + 1) {
let location = fast_mod(
self.nodes.len(),
hash + distance_to_initial_bucket as HashType,
);
let node = &self.nodes[location];
if let Some(node_key_ref) = node.key_ref() {
if node_key_ref == key {
return Some(location);
}
} else {
return None;
}
}
None
}
fn resized_to(&mut self, new_size: usize) -> Self {
let mut new_node_storage = Self::with_size_in(new_size, self.allocator().clone());
for mut node in self.nodes.drain(..) {
if let Some((key, value, hash)) = node.take_key_value() {
new_node_storage.insert_new(key, value, hash);
}
}
new_node_storage
}
fn replace_at_location(&mut self, location: usize, key: K, value: V) -> V {
self.nodes[location].replace(key, value).1
}
}
struct Node<K, V> {
hash: HashType,
// distance_to_initial_bucket = -1 => key and value are uninit.
// distance_to_initial_bucket >= 0 => key and value are init
distance_to_initial_bucket: i32,
key: MaybeUninit<K>,
value: MaybeUninit<V>,
}
impl<K, V> Node<K, V> {
fn new() -> Self {
Self {
hash: 0,
distance_to_initial_bucket: -1,
key: MaybeUninit::uninit(),
value: MaybeUninit::uninit(),
}
}
fn new_with(key: K, value: V, hash: HashType) -> Self {
Self {
hash,
distance_to_initial_bucket: 0,
key: MaybeUninit::new(key),
value: MaybeUninit::new(value),
}
}
fn value_ref(&self) -> Option<&V> {
if self.has_value() {
Some(unsafe { self.value.assume_init_ref() })
} else {
None
}
}
fn value_mut(&mut self) -> Option<&mut V> {
if self.has_value() {
Some(unsafe { self.value.assume_init_mut() })
} else {
None
}
}
fn key_ref(&self) -> Option<&K> {
if self.distance_to_initial_bucket >= 0 {
Some(unsafe { self.key.assume_init_ref() })
} else {
None
}
}
fn key_value_ref(&self) -> Option<(&K, &V)> {
if self.has_value() {
Some(unsafe { (self.key.assume_init_ref(), self.value.assume_init_ref()) })
} else {
None
}
}
fn key_value_mut(&mut self) -> Option<(&K, &mut V)> {
if self.has_value() {
Some(unsafe { (self.key.assume_init_ref(), self.value.assume_init_mut()) })
} else {
None
}
}
fn has_value(&self) -> bool {
self.distance_to_initial_bucket >= 0
}
fn take_key_value(&mut self) -> Option<(K, V, HashType)> {
if self.has_value() {
let key = mem::replace(&mut self.key, MaybeUninit::uninit());
let value = mem::replace(&mut self.value, MaybeUninit::uninit());
self.distance_to_initial_bucket = -1;
Some(unsafe { (key.assume_init(), value.assume_init(), self.hash) })
} else {
None
}
}
fn replace_value(&mut self, value: V) -> V {
if self.has_value() {
let old_value = mem::replace(&mut self.value, MaybeUninit::new(value));
unsafe { old_value.assume_init() }
} else {
panic!("Cannot replace an uninitialised node");
}
}
fn replace(&mut self, key: K, value: V) -> (K, V) {
if self.has_value() {
let old_key = mem::replace(&mut self.key, MaybeUninit::new(key));
let old_value = mem::replace(&mut self.value, MaybeUninit::new(value));
unsafe { (old_key.assume_init(), old_value.assume_init()) }
} else {
panic!("Cannot replace an uninitialised node");
}
}
fn increment_distance(&mut self) {
self.distance_to_initial_bucket += 1;
}
fn decrement_distance(&mut self) {
self.distance_to_initial_bucket -= 1;
if self.distance_to_initial_bucket < 0 {
panic!("Cannot decrement distance to below 0");
}
}
fn distance(&self) -> i32 {
self.distance_to_initial_bucket
}
}
impl<K, V> Drop for Node<K, V> {
fn drop(&mut self) {
if self.has_value() {
unsafe { ptr::drop_in_place(self.key.as_mut_ptr()) };
unsafe { ptr::drop_in_place(self.value.as_mut_ptr()) };
}
}
}
impl<K, V> Default for Node<K, V> {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod test {
use core::cell::RefCell;
use super::*;
#[test]
fn can_store_and_retrieve_8_elements() {
let mut map = HashMap::new();
for i in 0..8 {
map.insert(i, i % 4);
}
for i in 0..8 {
assert_eq!(map.get(&i), Some(&(i % 4)));
}
}
#[test]
fn can_get_the_length() {
let mut map = HashMap::new();
for i in 0..8 {
map.insert(i / 2, true);
}
assert_eq!(map.len(), 4);
}
#[test]
fn returns_none_if_element_does_not_exist() {
let mut map = HashMap::new();
for i in 0..8 {
map.insert(i, i % 3);
}
assert_eq!(map.get(&12), None);
}
#[test]
fn can_delete_entries() {
let mut map = HashMap::new();
for i in 0..8 {
map.insert(i, i % 3);
}
for i in 0..4 {
map.remove(&i);
}
assert_eq!(map.len(), 4);
assert_eq!(map.get(&3), None);
assert_eq!(map.get(&7), Some(&1));
}
#[test]
fn can_iterate_through_all_entries() {
let mut map = HashMap::new();
for i in 0..8 {
map.insert(i, i);
}
let mut max_found = -1;
let mut num_found = 0;
for (_, value) in map.into_iter() {
max_found = max_found.max(value);
num_found += 1;
}
assert_eq!(num_found, 8);
assert_eq!(max_found, 7);
}
#[test]
fn can_insert_more_than_initial_capacity() {
let mut map = HashMap::new();
for i in 0..65 {
map.insert(i, i % 4);
}
for i in 0..65 {
assert_eq!(map.get(&i), Some(&(i % 4)));
}
}
struct NoisyDrop {
i: i32,
dropped: bool,
}
impl NoisyDrop {
fn new(i: i32) -> Self {
Self { i, dropped: false }
}
}
impl PartialEq for NoisyDrop {
fn eq(&self, other: &Self) -> bool {
self.i == other.i
}
}
impl Eq for NoisyDrop {}
impl Hash for NoisyDrop {
fn hash<H: Hasher>(&self, hasher: &mut H) {
hasher.write_i32(self.i);
}
}
impl Drop for NoisyDrop {
fn drop(&mut self) {
if self.dropped {
panic!("NoisyDropped dropped twice");
}
self.dropped = true;
}
}
trait RngNextI32 {
fn next_i32(&mut self) -> i32;
}
impl<T> RngNextI32 for T
where
T: rand::RngCore,
{
fn next_i32(&mut self) -> i32 {
self.next_u32() as i32
}
}
#[cfg(not(miri))] // takes way too long to run under miri
#[test]
fn extreme_case() {
use rand::SeedableRng;
let mut map = HashMap::new();
let mut rng = rand::rngs::SmallRng::seed_from_u64(20);
let mut answers: [Option<i32>; 128] = [None; 128];
for _ in 0..5_000 {
let command = rng.next_i32().rem_euclid(2);
let key = rng.next_i32().rem_euclid(answers.len() as i32);
let value = rng.next_i32();
match command {
0 => {
// insert
answers[key as usize] = Some(value);
map.insert(NoisyDrop::new(key), NoisyDrop::new(value));
}
1 => {
// remove
answers[key as usize] = None;
map.remove(&NoisyDrop::new(key));
}
_ => {}
}
for (i, answer) in answers.iter().enumerate() {
assert_eq!(
map.get(&NoisyDrop::new(i as i32)).map(|nd| &nd.i),
answer.as_ref()
);
}
}
}
#[derive(Clone)]
struct Droppable<'a> {
id: usize,
drop_registry: &'a DropRegistry,
}
impl Hash for Droppable<'_> {
fn hash<H: Hasher>(&self, hasher: &mut H) {
hasher.write_usize(self.id);
}
}
impl PartialEq for Droppable<'_> {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for Droppable<'_> {}
impl Drop for Droppable<'_> {
fn drop(&mut self) {
self.drop_registry.dropped(self.id);
}
}
struct DropRegistry {
are_dropped: RefCell<Vec<i32>>,
}
impl DropRegistry {
pub fn new() -> Self {
Self {
are_dropped: Default::default(),
}
}
pub fn new_droppable(&self) -> Droppable<'_> {
self.are_dropped.borrow_mut().push(0);
Droppable {
id: self.are_dropped.borrow().len() - 1,
drop_registry: self,
}
}
pub fn dropped(&self, id: usize) {
self.are_dropped.borrow_mut()[id] += 1;
}
pub fn assert_dropped_once(&self, id: usize) {
assert_eq!(self.are_dropped.borrow()[id], 1);
}
pub fn assert_not_dropped(&self, id: usize) {
assert_eq!(self.are_dropped.borrow()[id], 0);
}
pub fn assert_dropped_n_times(&self, id: usize, num_drops: i32) {
assert_eq!(self.are_dropped.borrow()[id], num_drops);
}
}
#[test]
fn correctly_drops_on_remove_and_overall_drop() {
let drop_registry = DropRegistry::new();
let droppable1 = drop_registry.new_droppable();
let droppable2 = drop_registry.new_droppable();
let id1 = droppable1.id;
let id2 = droppable2.id;
{
let mut map = HashMap::new();
map.insert(1, droppable1);
map.insert(2, droppable2);
drop_registry.assert_not_dropped(id1);
drop_registry.assert_not_dropped(id2);
map.remove(&1);
drop_registry.assert_dropped_once(id1);
drop_registry.assert_not_dropped(id2);
}
drop_registry.assert_dropped_once(id2);
}
#[test]
fn correctly_drop_on_override() {
let drop_registry = DropRegistry::new();
let droppable1 = drop_registry.new_droppable();
let droppable2 = drop_registry.new_droppable();
let id1 = droppable1.id;
let id2 = droppable2.id;
{
let mut map = HashMap::new();
map.insert(1, droppable1);
drop_registry.assert_not_dropped(id1);
map.insert(1, droppable2);
drop_registry.assert_dropped_once(id1);
drop_registry.assert_not_dropped(id2);
}
drop_registry.assert_dropped_once(id2);
}
#[test]
fn correctly_drops_key_on_override() {
let drop_registry = DropRegistry::new();
let droppable1 = drop_registry.new_droppable();
let droppable1a = droppable1.clone();
let id1 = droppable1.id;
{
let mut map = HashMap::new();
map.insert(droppable1, 1);
drop_registry.assert_not_dropped(id1);
map.insert(droppable1a, 2);
drop_registry.assert_dropped_once(id1);
}
drop_registry.assert_dropped_n_times(id1, 2);
}
#[test]
fn test_retain() {
let mut map = HashMap::new();
for i in 0..100 {
map.insert(i, i);
}
map.retain(|k, _| k % 2 == 0);
assert_eq!(map[&2], 2);
assert_eq!(map.get(&3), None);
assert_eq!(map.iter().count(), 50); // force full iteration
}
#[test]
fn test_size_hint_iter() {
let mut map = HashMap::new();
for i in 0..100 {
map.insert(i, i);
}
let mut iter = map.iter();
assert_eq!(iter.size_hint(), (100, Some(100)));
iter.next();
assert_eq!(iter.size_hint(), (99, Some(99)));
}
#[test]
fn test_size_hint_into_iter() {
let mut map = HashMap::new();
for i in 0..100 {
map.insert(i, i);
}
let mut iter = map.into_iter();
assert_eq!(iter.size_hint(), (100, Some(100)));
iter.next();
assert_eq!(iter.size_hint(), (99, Some(99)));
}
// Following test cases copied from the rust source
// https://github.com/rust-lang/rust/blob/master/library/std/src/collections/hash/map/tests.rs
mod rust_std_tests {
use crate::{Entry::*, HashMap};
#[test]
fn test_entry() {
let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)];
let mut map: HashMap<_, _> = xs.iter().copied().collect();
// Existing key (insert)
match map.entry(1) {
Vacant(_) => unreachable!(),
Occupied(mut view) => {
assert_eq!(view.get(), &10);
assert_eq!(view.insert(100), 10);
}
}
assert_eq!(map.get(&1).unwrap(), &100);
assert_eq!(map.len(), 6);
// Existing key (update)
match map.entry(2) {
Vacant(_) => unreachable!(),
Occupied(mut view) => {
let v = view.get_mut();
let new_v = (*v) * 10;
*v = new_v;
}
}
assert_eq!(map.get(&2).unwrap(), &200);
assert_eq!(map.len(), 6);
// Existing key (take)
match map.entry(3) {
Vacant(_) => unreachable!(),
Occupied(view) => {
assert_eq!(view.remove(), 30);
}
}
assert_eq!(map.get(&3), None);
assert_eq!(map.len(), 5);
// Inexistent key (insert)
match map.entry(10) {
Occupied(_) => unreachable!(),
Vacant(view) => {
assert_eq!(*view.insert(1000), 1000);
}
}
assert_eq!(map.get(&10).unwrap(), &1000);
assert_eq!(map.len(), 6);
}
#[test]
fn test_occupied_entry_key() {
let mut a = HashMap::new();
let key = "hello there";
let value = "value goes here";
assert!(a.is_empty());
a.insert(key, value);
assert_eq!(a.len(), 1);
assert_eq!(a[key], value);
match a.entry(key) {
Vacant(_) => panic!(),
Occupied(e) => assert_eq!(key, *e.key()),
}
assert_eq!(a.len(), 1);
assert_eq!(a[key], value);
}
#[test]
fn test_vacant_entry_key() {
let mut a = HashMap::new();
let key = "hello there";
let value = "value goes here";
assert!(a.is_empty());
match a.entry(key) {
Occupied(_) => panic!(),
Vacant(e) => {
assert_eq!(key, *e.key());
e.insert(value);
}
}
assert_eq!(a.len(), 1);
assert_eq!(a[key], value);
}
#[test]
fn test_index() {
let mut map = HashMap::new();
map.insert(1, 2);
map.insert(2, 1);
map.insert(3, 4);
assert_eq!(map[&2], 1);
}
}
}