agb/agb-fixnum/src/lib.rs
2023-02-07 20:32:43 +00:00

1295 lines
36 KiB
Rust

#![no_std]
#![deny(missing_docs)]
//! Fixed point number implementation for representing non integers efficiently.
use core::{
cmp::{Eq, Ord, PartialEq, PartialOrd},
fmt::{Debug, Display},
mem::size_of,
ops::{
Add, AddAssign, BitAnd, Div, DivAssign, Mul, MulAssign, Neg, Not, Rem, RemAssign, Shl, Shr,
Sub, SubAssign,
},
};
#[doc(hidden)]
/// Used internally by the [num!] macro which should be used instead.
pub use agb_macros::num as num_inner;
/// Can be thought of having the signature `num!(float) -> Num<I, N>`.
/// ```
/// # use agb_fixnum::Num;
/// # use agb_fixnum::num;
/// let n: Num<i32, 8> = num!(0.75);
/// assert_eq!(n, Num::new(3) / 4, "0.75 == 3/4");
/// ```
#[macro_export]
macro_rules! num {
($value:literal) => {{
$crate::Num::new_from_parts($crate::num_inner!($value))
}};
}
/// A trait for everything required to use as the internal representation of the
/// fixed point number.
pub trait Number:
Sized
+ Copy
+ PartialOrd
+ Ord
+ PartialEq
+ Eq
+ Add<Output = Self>
+ Sub<Output = Self>
+ Rem<Output = Self>
+ Div<Output = Self>
+ Mul<Output = Self>
{
}
impl<I: FixedWidthUnsignedInteger, const N: usize> Number for Num<I, N> {}
impl<I: FixedWidthUnsignedInteger> Number for I {}
/// A trait for integers that don't implement unary negation
pub trait FixedWidthUnsignedInteger:
Sized
+ Copy
+ PartialOrd
+ Ord
+ PartialEq
+ Eq
+ Shl<usize, Output = Self>
+ Shr<usize, Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Not<Output = Self>
+ BitAnd<Output = Self>
+ Rem<Output = Self>
+ Div<Output = Self>
+ Mul<Output = Self>
+ From<u8>
+ Debug
+ Display
{
/// Returns the representation of zero
fn zero() -> Self;
/// Returns the representation of one
fn one() -> Self;
/// Returns the representation of ten
fn ten() -> Self;
/// Converts an i32 to it's own representation, panics on failure
fn from_as_i32(v: i32) -> Self;
}
/// Trait for an integer that includes negation
pub trait FixedWidthSignedInteger: FixedWidthUnsignedInteger + Neg<Output = Self> {
#[must_use]
/// Returns the absolute value of the number
fn fixed_abs(self) -> Self;
}
macro_rules! fixed_width_unsigned_integer_impl {
($T: ty) => {
impl FixedWidthUnsignedInteger for $T {
#[inline(always)]
fn zero() -> Self {
0
}
#[inline(always)]
fn one() -> Self {
1
}
#[inline(always)]
fn ten() -> Self {
10
}
#[inline(always)]
fn from_as_i32(v: i32) -> Self {
v as $T
}
}
};
}
macro_rules! fixed_width_signed_integer_impl {
($T: ty) => {
impl FixedWidthSignedInteger for $T {
#[inline(always)]
fn fixed_abs(self) -> Self {
self.abs()
}
}
};
}
fixed_width_unsigned_integer_impl!(u8);
fixed_width_unsigned_integer_impl!(i16);
fixed_width_unsigned_integer_impl!(u16);
fixed_width_unsigned_integer_impl!(i32);
fixed_width_unsigned_integer_impl!(u32);
fixed_width_unsigned_integer_impl!(usize);
fixed_width_signed_integer_impl!(i16);
fixed_width_signed_integer_impl!(i32);
/// A fixed point number represented using `I` with `N` bits of fractional precision
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct Num<I: FixedWidthUnsignedInteger, const N: usize>(I);
/// An often convenient representation for the Game Boy Advance using word sized
/// internal representation for maximum efficiency
pub type FixedNum<const N: usize> = Num<i32, N>;
impl<I: FixedWidthUnsignedInteger, const N: usize> From<I> for Num<I, N> {
fn from(value: I) -> Self {
Num(value << N)
}
}
impl<I, const N: usize> Default for Num<I, N>
where
I: FixedWidthUnsignedInteger,
{
fn default() -> Self {
Num(I::zero())
}
}
impl<I, T, const N: usize> Add<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn add(self, rhs: T) -> Self::Output {
Num(self.0 + rhs.into().0)
}
}
impl<I, T, const N: usize> AddAssign<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn add_assign(&mut self, rhs: T) {
self.0 = (*self + rhs.into()).0
}
}
impl<I, T, const N: usize> Sub<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn sub(self, rhs: T) -> Self::Output {
Num(self.0 - rhs.into().0)
}
}
impl<I, T, const N: usize> SubAssign<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn sub_assign(&mut self, rhs: T) {
self.0 = (*self - rhs.into()).0
}
}
impl<I, const N: usize> Mul<Num<I, N>> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
{
type Output = Self;
fn mul(self, rhs: Num<I, N>) -> Self::Output {
Num(((self.floor() * rhs.floor()) << N)
+ (self.floor() * rhs.frac() + rhs.floor() * self.frac())
+ ((self.frac() * rhs.frac()) >> N))
}
}
impl<I, const N: usize> Mul<I> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
{
type Output = Self;
fn mul(self, rhs: I) -> Self::Output {
Num(self.0 * rhs)
}
}
impl<I, T, const N: usize> MulAssign<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
Num<I, N>: Mul<T, Output = Num<I, N>>,
{
fn mul_assign(&mut self, rhs: T) {
self.0 = (*self * rhs).0
}
}
impl<I, const N: usize> Div<Num<I, N>> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
{
type Output = Self;
fn div(self, rhs: Num<I, N>) -> Self::Output {
Num((self.0 << N) / rhs.0)
}
}
impl<I, const N: usize> Div<I> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
{
type Output = Self;
fn div(self, rhs: I) -> Self::Output {
Num(self.0 / rhs)
}
}
impl<I, T, const N: usize> DivAssign<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
Num<I, N>: Div<T, Output = Num<I, N>>,
{
fn div_assign(&mut self, rhs: T) {
self.0 = (*self / rhs).0
}
}
impl<I, T, const N: usize> Rem<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
type Output = Self;
fn rem(self, modulus: T) -> Self::Output {
Num(self.0 % modulus.into().0)
}
}
impl<I, T, const N: usize> RemAssign<T> for Num<I, N>
where
I: FixedWidthUnsignedInteger,
T: Into<Num<I, N>>,
{
fn rem_assign(&mut self, modulus: T) {
self.0 = (*self % modulus).0
}
}
impl<I: FixedWidthSignedInteger, const N: usize> Neg for Num<I, N> {
type Output = Self;
fn neg(self) -> Self::Output {
Num(-self.0)
}
}
impl<I: FixedWidthUnsignedInteger, const N: usize> Num<I, N> {
/// Performs the conversion between two integer types and between two different fractional precisions
pub fn change_base<J: FixedWidthUnsignedInteger + From<I>, const M: usize>(self) -> Num<J, M> {
let n: J = self.0.into();
if N < M {
Num(n << (M - N))
} else {
Num(n >> (N - M))
}
}
/// Attempts to perform the conversion between two integer types and between
/// two different fractional precisions
/// ```
/// # use agb_fixnum::*;
/// let a: Num<i32, 8> = 1.into();
/// let b: Option<Num<u8, 4>> = a.try_change_base();
/// assert_eq!(b, Some(1.into()));
///
/// let a: Num<i32, 8> = 18.into();
/// let b: Option<Num<u8, 4>> = a.try_change_base();
/// assert_eq!(b, None);
/// ```
pub fn try_change_base<J: FixedWidthUnsignedInteger + TryFrom<I>, const M: usize>(
self,
) -> Option<Num<J, M>> {
if size_of::<I>() > size_of::<J>() {
// I bigger than J, perform the shift in I to preserve precision
let n = if N < M {
self.0 << (M - N)
} else {
self.0 >> (N - M)
};
let n = n.try_into().ok()?;
Some(Num(n))
} else {
// J bigger than I, perform the shift in J to preserve precision
let n: J = self.0.try_into().ok()?;
let n = if N < M { n << (M - N) } else { n >> (N - M) };
Some(Num(n))
}
}
/// A bit for bit conversion from a number to a fixed num
pub const fn from_raw(n: I) -> Self {
Num(n)
}
/// The internal representation of the fixed point number
pub fn to_raw(self) -> I {
self.0
}
/// Truncates the fixed point number returning the integral part
/// ```rust
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.67);
/// assert_eq!(n.trunc(), 5);
/// let n: Num<i32, 8> = num!(-5.67);
/// assert_eq!(n.trunc(), -5);
/// ```
pub fn trunc(self) -> I {
self.0 / (I::one() << N)
}
#[must_use]
/// Performs the equivalent to the integer rem_euclid, which is modulo numbering.
/// ```rust
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.67);
/// let r: Num<i32, 8> = num!(4.);
/// assert_eq!(n.rem_euclid(r), num!(1.67));
///
/// let n: Num<i32, 8> = num!(-1.5);
/// let r: Num<i32, 8> = num!(4.);
/// assert_eq!(n.rem_euclid(r), num!(2.5));
/// ```
pub fn rem_euclid(self, rhs: Self) -> Self {
let r = self % rhs;
if r < I::zero().into() {
if rhs < I::zero().into() {
r - rhs
} else {
r + rhs
}
} else {
r
}
}
/// Performs rounding towards negative infinity
/// ```rust
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.67);
/// assert_eq!(n.floor(), 5);
/// let n: Num<i32, 8> = num!(-5.67);
/// assert_eq!(n.floor(), -6);
/// ```
pub fn floor(self) -> I {
self.0 >> N
}
/// Returns the fractional component of a number as it's integer representation
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.5);
/// assert_eq!(n.frac(), 1 << 7);
/// ```
pub fn frac(self) -> I {
self.0 & ((I::one() << N) - I::one())
}
/// Creates an integer represented by a fixed point number
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = Num::new(5);
/// assert_eq!(n.frac(), 0); // no fractional component
/// assert_eq!(n, num!(5.)); // just equals the number 5
/// ```
pub fn new(integral: I) -> Self {
Self(integral << N)
}
#[doc(hidden)]
/// Called by the [num!] macro in order to create a fixed point number
pub fn new_from_parts(num: (i32, i32)) -> Self {
Self(I::from_as_i32(((num.0) << N) + (num.1 >> (30 - N))))
}
}
impl<const N: usize> Num<i32, N> {
#[must_use]
/// Returns the square root of a number, it is calculated a digit at a time.
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(16.);
/// assert_eq!(n.sqrt(), num!(4.));
/// let n: Num<i32, 8> = num!(2.25);
/// assert_eq!(n.sqrt(), num!(1.5));
/// ```
pub fn sqrt(self) -> Self {
assert_eq!(N % 2, 0, "N must be even to be able to square root");
assert!(self.0 >= 0, "sqrt is only valid for positive numbers");
let mut d = 1 << 30;
let mut x = self.0;
let mut c = 0;
while d > self.0 {
d >>= 2;
}
while d != 0 {
if x >= c + d {
x -= c + d;
c = (c >> 1) + d;
} else {
c >>= 1;
}
d >>= 2;
}
Self(c << (N / 2))
}
}
impl<I: FixedWidthSignedInteger, const N: usize> Num<I, N> {
#[must_use]
/// Returns the absolute value of a fixed point number
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(5.5);
/// assert_eq!(n.abs(), num!(5.5));
/// let n: Num<i32, 8> = num!(-5.5);
/// assert_eq!(n.abs(), num!(5.5));
/// ```
pub fn abs(self) -> Self {
Num(self.0.fixed_abs())
}
/// Calculates the cosine of a fixed point number with the domain of [0, 1].
/// Uses a [fifth order polynomial](https://github.com/tarcieri/micromath/blob/24584465b48ff4e87cffb709c7848664db896b4f/src/float/cos.rs#L226).
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(0.); // 0 radians
/// assert_eq!(n.cos(), num!(1.));
/// let n: Num<i32, 8> = num!(0.25); // pi / 2 radians
/// assert_eq!(n.cos(), num!(0.));
/// let n: Num<i32, 8> = num!(0.5); // pi radians
/// assert_eq!(n.cos(), num!(-1.));
/// let n: Num<i32, 8> = num!(0.75); // 3pi/2 radians
/// assert_eq!(n.cos(), num!(0.));
/// let n: Num<i32, 8> = num!(1.); // 2 pi radians (whole rotation)
/// assert_eq!(n.cos(), num!(1.));
/// ```
#[must_use]
pub fn cos(self) -> Self {
let one: Self = I::one().into();
let mut x = self;
let four: I = 4.into();
let two: I = 2.into();
let sixteen: I = 16.into();
let nine: I = 9.into();
let forty: I = 40.into();
x -= one / four + (x + one / four).floor();
x *= (x.abs() - one / two) * sixteen;
x += x * (x.abs() - one) * (nine / forty);
x
}
/// Calculates the sine of a number with domain of [0, 1].
/// ```
/// # use agb_fixnum::*;
/// let n: Num<i32, 8> = num!(0.); // 0 radians
/// assert_eq!(n.sin(), num!(0.));
/// let n: Num<i32, 8> = num!(0.25); // pi / 2 radians
/// assert_eq!(n.sin(), num!(1.));
/// let n: Num<i32, 8> = num!(0.5); // pi radians
/// assert_eq!(n.sin(), num!(0.));
/// let n: Num<i32, 8> = num!(0.75); // 3pi/2 radians
/// assert_eq!(n.sin(), num!(-1.));
/// let n: Num<i32, 8> = num!(1.); // 2 pi radians (whole rotation)
/// assert_eq!(n.sin(), num!(0.));
/// ```
#[must_use]
pub fn sin(self) -> Self {
let one: Self = I::one().into();
let four: I = 4.into();
(self - one / four).cos()
}
}
impl<I: FixedWidthUnsignedInteger, const N: usize> Display for Num<I, N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let mut integral = self.0 >> N;
let mask: I = (I::one() << N) - I::one();
let mut fractional = self.0 & mask;
// Negative fixnums are awkward to print if they have non zero fractional part.
// This is because you can think of them as `number + non negative fraction`.
//
// But if you think of a negative number, you'd like it to be `negative number - non negative fraction`
// So we have to add 1 to the integral bit, and take 1 - fractional bit
if fractional != I::zero() && integral < I::zero() {
integral = integral + I::one();
if integral == I::zero() {
// If the number is in the range (-1, 0), then we just bumped `integral` from -1 to 0,
// so we need to compensate for the missing negative sign.
write!(f, "-")?;
}
fractional = (I::one() << N) - fractional;
}
write!(f, "{integral}")?;
if fractional != I::zero() {
write!(f, ".")?;
}
while fractional & mask != I::zero() {
fractional = fractional * I::ten();
write!(f, "{}", (fractional & !mask) >> N)?;
fractional = fractional & mask;
}
Ok(())
}
}
impl<I: FixedWidthUnsignedInteger, const N: usize> Debug for Num<I, N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use core::any::type_name;
write!(f, "Num<{}, {}>({})", type_name::<I>(), N, self)
}
}
/// A vector of two points: (x, y) represented by integers or fixed point numbers
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default)]
pub struct Vector2D<T: Number> {
/// The x coordinate
pub x: T,
/// The y coordinate
pub y: T,
}
impl<T: Number> Add<Vector2D<T>> for Vector2D<T> {
type Output = Vector2D<T>;
fn add(self, rhs: Vector2D<T>) -> Self::Output {
Vector2D {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl<T: Number, U: Copy> Mul<U> for Vector2D<T>
where
T: Mul<U, Output = T>,
{
type Output = Vector2D<T>;
fn mul(self, rhs: U) -> Self::Output {
Vector2D {
x: self.x * rhs,
y: self.y * rhs,
}
}
}
impl<T: Number, U: Copy> MulAssign<U> for Vector2D<T>
where
T: Mul<U, Output = T>,
{
fn mul_assign(&mut self, rhs: U) {
let result = *self * rhs;
self.x = result.x;
self.y = result.y;
}
}
impl<T: Number, U: Copy> Div<U> for Vector2D<T>
where
T: Div<U, Output = T>,
{
type Output = Vector2D<T>;
fn div(self, rhs: U) -> Self::Output {
Vector2D {
x: self.x / rhs,
y: self.y / rhs,
}
}
}
impl<T: Number, U: Copy> DivAssign<U> for Vector2D<T>
where
T: Div<U, Output = T>,
{
fn div_assign(&mut self, rhs: U) {
let result = *self / rhs;
self.x = result.x;
self.y = result.y;
}
}
impl<T: Number> AddAssign<Self> for Vector2D<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Number> Sub<Vector2D<T>> for Vector2D<T> {
type Output = Vector2D<T>;
fn sub(self, rhs: Vector2D<T>) -> Self::Output {
Vector2D {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
impl<T: Number> SubAssign<Self> for Vector2D<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<I: FixedWidthUnsignedInteger, const N: usize> Vector2D<Num<I, N>> {
#[must_use]
/// Truncates the x and y coordinate, see [Num::trunc]
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(1.56), num!(-2.2)).into();
/// let v2: Vector2D<i32> = (1, -2).into();
/// assert_eq!(v1.trunc(), v2);
/// ```
pub fn trunc(self) -> Vector2D<I> {
Vector2D {
x: self.x.trunc(),
y: self.y.trunc(),
}
}
#[must_use]
/// Floors the x and y coordinate, see [Num::floor]
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = Vector2D::new(num!(1.56), num!(-2.2));
/// let v2: Vector2D<i32> = (1, -3).into();
/// assert_eq!(v1.floor(), v2);
/// ```
pub fn floor(self) -> Vector2D<I> {
Vector2D {
x: self.x.floor(),
y: self.y.floor(),
}
}
#[must_use]
/// Attempts to change the base returning None if the numbers cannot be represented
pub fn try_change_base<J: FixedWidthUnsignedInteger + TryFrom<I>, const M: usize>(
self,
) -> Option<Vector2D<Num<J, M>>> {
Some(Vector2D::new(
self.x.try_change_base()?,
self.y.try_change_base()?,
))
}
}
impl<const N: usize> Vector2D<Num<i32, N>> {
#[must_use]
/// Calculates the magnitude squared, ie (x*x + y*y)
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert_eq!(v1.magnitude_squared(), 25.into());
/// ```
pub fn magnitude_squared(self) -> Num<i32, N> {
self.x * self.x + self.y * self.y
}
#[must_use]
/// Calculates the manhattan distance, x.abs() + y.abs().
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert_eq!(v1.manhattan_distance(), 7.into());
/// ```
pub fn manhattan_distance(self) -> Num<i32, N> {
self.x.abs() + self.y.abs()
}
#[must_use]
/// Calculates the magnitude by square root
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert_eq!(v1.magnitude(), 5.into());
/// ```
pub fn magnitude(self) -> Num<i32, N> {
self.magnitude_squared().sqrt()
}
/// Calculates the magnitude of a vector using the [alpha max plus beta min
/// algorithm](https://en.wikipedia.org/wiki/Alpha_max_plus_beta_min_algorithm)
/// this has a maximum error of less than 4% of the true magnitude, probably
/// depending on the size of your fixed point approximation
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(3.), num!(4.)).into();
/// assert!(v1.fast_magnitude() > num!(4.9) && v1.fast_magnitude() < num!(5.1));
/// ```
#[must_use]
pub fn fast_magnitude(self) -> Num<i32, N> {
let max = core::cmp::max(self.x.abs(), self.y.abs());
let min = core::cmp::min(self.x.abs(), self.y.abs());
max * num!(0.960433870103) + min * num!(0.397824734759)
}
#[must_use]
/// Normalises the vector to magnitude of one by performing a square root,
/// due to fixed point imprecision this magnitude may not be exactly one
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(4.), num!(4.)).into();
/// assert_eq!(v1.normalise().magnitude(), 1.into());
/// ```
pub fn normalise(self) -> Self {
self / self.magnitude()
}
#[must_use]
/// Normalises the vector to magnitude of one using [Vector2D::fast_magnitude].
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<Num<i32, 8>> = (num!(4.), num!(4.)).into();
/// assert_eq!(v1.fast_normalise().magnitude(), 1.into());
/// ```
pub fn fast_normalise(self) -> Self {
self / self.fast_magnitude()
}
}
impl<T: Number, P: Number + Into<T>> From<(P, P)> for Vector2D<T> {
fn from(f: (P, P)) -> Self {
Vector2D::new(f.0.into(), f.1.into())
}
}
impl<T: Number> Vector2D<T> {
/// Converts the representation of the vector to another type
/// ```
/// # use agb_fixnum::*;
/// let v1: Vector2D<i16> = Vector2D::new(1, 2);
/// let v2: Vector2D<i32> = v1.change_base();
/// ```
pub fn change_base<U: Number + From<T>>(self) -> Vector2D<U> {
(self.x, self.y).into()
}
}
impl<I: FixedWidthSignedInteger, const N: usize> Vector2D<Num<I, N>> {
/// Creates a unit vector from an angle, noting that the domain of the angle
/// is [0, 1], see [Num::cos] and [Num::sin].
/// ```
/// # use agb_fixnum::*;
/// let v: Vector2D<Num<i32, 8>> = Vector2D::new_from_angle(num!(0.0));
/// assert_eq!(v, (num!(1.0), num!(0.0)).into());
/// ```
pub fn new_from_angle(angle: Num<I, N>) -> Self {
Vector2D {
x: angle.cos(),
y: angle.sin(),
}
}
}
impl<I: FixedWidthUnsignedInteger, const N: usize> From<Vector2D<I>> for Vector2D<Num<I, N>> {
fn from(n: Vector2D<I>) -> Self {
Vector2D {
x: n.x.into(),
y: n.y.into(),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
/// A rectangle with a position in 2d space and a 2d size
pub struct Rect<T: Number> {
/// The position of the rectangle
pub position: Vector2D<T>,
/// The size of the rectangle
pub size: Vector2D<T>,
}
impl<T: Number> Rect<T> {
#[must_use]
/// Creates a rectangle from it's position and size
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(2,3));
/// assert_eq!(r.position, Vector2D::new(1,1));
/// assert_eq!(r.size, Vector2D::new(2,3));
/// ```
pub fn new(position: Vector2D<T>, size: Vector2D<T>) -> Self {
Rect { position, size }
}
/// Returns true if the rectangle contains the point given, note that the boundary counts as containing the rectangle.
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
/// assert!(r.contains_point(Vector2D::new(1,1)));
/// assert!(r.contains_point(Vector2D::new(2,2)));
/// assert!(r.contains_point(Vector2D::new(3,3)));
/// assert!(r.contains_point(Vector2D::new(4,4)));
///
/// assert!(!r.contains_point(Vector2D::new(0,2)));
/// assert!(!r.contains_point(Vector2D::new(5,2)));
/// assert!(!r.contains_point(Vector2D::new(2,0)));
/// assert!(!r.contains_point(Vector2D::new(2,5)));
/// ```
pub fn contains_point(&self, point: Vector2D<T>) -> bool {
point.x >= self.position.x
&& point.x <= self.position.x + self.size.x
&& point.y >= self.position.y
&& point.y <= self.position.y + self.size.y
}
/// Returns true if the other rectangle touches or overlaps the first.
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
///
/// assert!(r.touches(r.clone()));
///
/// let r1 = Rect::new(Vector2D::new(2,2), Vector2D::new(3,3));
/// assert!(r.touches(r1));
///
/// let r2 = Rect::new(Vector2D::new(-10,-10), Vector2D::new(3,3));
/// assert!(!r.touches(r2));
/// ```
pub fn touches(&self, other: Rect<T>) -> bool {
self.position.x < other.position.x + other.size.x
&& self.position.x + self.size.x > other.position.x
&& self.position.y < other.position.y + other.size.y
&& self.position.y + self.size.y > other.position.y
}
#[must_use]
/// Returns the rectangle that is the region that the two rectangles have in
/// common, or [None] if they don't overlap
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
/// let r2 = Rect::new(Vector2D::new(2,2), Vector2D::new(3,3));
///
/// assert_eq!(r.overlapping_rect(r2), Some(Rect::new(Vector2D::new(2,2), Vector2D::new(2,2))));
/// ```
///
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(3,3));
/// let r2 = Rect::new(Vector2D::new(-10,-10), Vector2D::new(3,3));
///
/// assert_eq!(r.overlapping_rect(r2), None);
/// ```
pub fn overlapping_rect(&self, other: Rect<T>) -> Option<Self> {
if !self.touches(other) {
return None;
}
fn max<E: Number>(x: E, y: E) -> E {
if x > y {
x
} else {
y
}
}
fn min<E: Number>(x: E, y: E) -> E {
if x > y {
y
} else {
x
}
}
let top_left: Vector2D<T> = (
max(self.position.x, other.position.x),
max(self.position.y, other.position.y),
)
.into();
let bottom_right: Vector2D<T> = (
min(
self.position.x + self.size.x,
other.position.x + other.size.x,
),
min(
self.position.y + self.size.y,
other.position.y + other.size.y,
),
)
.into();
Some(Rect::new(top_left, bottom_right - top_left))
}
}
impl<T: FixedWidthUnsignedInteger> Rect<T> {
/// Iterate over the points in a rectangle in row major order.
/// ```
/// # use agb_fixnum::*;
/// let r = Rect::new(Vector2D::new(1,1), Vector2D::new(2,3));
///
/// let expected_points = vec![(1,1), (2,1), (1,2), (2,2), (1,3), (2,3)];
/// let rect_points: Vec<(i32, i32)> = r.iter().collect();
///
/// assert_eq!(rect_points, expected_points);
/// ```
pub fn iter(self) -> impl Iterator<Item = (T, T)> {
let mut x = self.position.x;
let mut y = self.position.y;
core::iter::from_fn(move || {
if x >= self.position.x + self.size.x {
x = self.position.x;
y = y + T::one();
if y >= self.position.y + self.size.y {
return None;
}
}
let ret_x = x;
x = x + T::one();
Some((ret_x, y))
})
}
}
impl<T: Number> Vector2D<T> {
/// Created a vector from the given coordinates
/// ```
/// # use agb_fixnum::*;
/// let v = Vector2D::new(1, 2);
/// assert_eq!(v.x, 1);
/// assert_eq!(v.y, 2);
/// ```
pub const fn new(x: T, y: T) -> Self {
Vector2D { x, y }
}
/// Returns the tuple of the coordinates
/// ```
/// # use agb_fixnum::*;
/// let v = Vector2D::new(1, 2);
/// assert_eq!(v.get(), (1, 2));
/// ```
pub fn get(self) -> (T, T) {
(self.x, self.y)
}
#[must_use]
/// Calculates the hadamard product of two vectors
/// ```
/// # use agb_fixnum::*;
/// let v1 = Vector2D::new(2, 3);
/// let v2 = Vector2D::new(4, 5);
///
/// let r = v1.hadamard(v2);
/// assert_eq!(r, Vector2D::new(v1.x * v2.x, v1.y * v2.y));
/// ```
pub fn hadamard(self, other: Self) -> Self {
Self {
x: self.x * other.x,
y: self.y * other.y,
}
}
#[must_use]
/// Swaps the x and y coordinate
/// ```
/// # use agb_fixnum::*;
/// let v1 = Vector2D::new(2, 3);
/// assert_eq!(v1.swap(), Vector2D::new(3, 2));
/// ```
pub fn swap(self) -> Self {
Self {
x: self.y,
y: self.x,
}
}
}
impl<T: Number + Neg<Output = T>> Neg for Vector2D<T> {
type Output = Self;
fn neg(self) -> Self::Output {
(-self.x, -self.y).into()
}
}
#[cfg(test)]
mod tests {
extern crate alloc;
use super::*;
use alloc::format;
#[test]
fn formats_whole_numbers_correctly() {
let a = Num::<i32, 8>::new(-4i32);
assert_eq!(format!("{a}"), "-4");
}
#[test]
fn formats_fractions_correctly() {
let a = Num::<i32, 8>::new(5);
let four = Num::<i32, 8>::new(4);
let minus_one = Num::<i32, 8>::new(-1);
let b: Num<i32, 8> = a / four;
let c: Num<i32, 8> = b * minus_one;
let d: Num<i32, 8> = minus_one / four;
assert_eq!(b + c, 0.into());
assert_eq!(format!("{b}"), "1.25");
assert_eq!(format!("{c}"), "-1.25");
assert_eq!(format!("{d}"), "-0.25");
}
#[test]
fn sqrt() {
for x in 1..1024 {
let n: Num<i32, 8> = Num::new(x * x);
assert_eq!(n.sqrt(), x.into());
}
}
#[test]
fn test_macro_conversion() {
fn test_positive<A: FixedWidthUnsignedInteger, const B: usize>() {
let a: Num<A, B> = num!(1.5);
let one = A::one() << B;
let b = Num::from_raw(one + (one >> 1));
assert_eq!(a, b);
}
fn test_negative<A: FixedWidthSignedInteger, const B: usize>() {
let a: Num<A, B> = num!(-1.5);
let one = A::one() << B;
let b = Num::from_raw(one + (one >> 1));
assert_eq!(a, -b);
}
fn test_base<const B: usize>() {
test_positive::<i32, B>();
test_positive::<u32, B>();
test_negative::<i32, B>();
if B < 16 {
test_positive::<u16, B>();
test_positive::<i16, B>();
test_negative::<i16, B>();
}
}
// some nice powers of two
test_base::<8>();
test_base::<4>();
test_base::<16>();
// not a power of two
test_base::<10>();
// an odd number
test_base::<9>();
// and a prime
test_base::<11>();
}
#[test]
fn test_numbers() {
// test addition
let n: Num<i32, 8> = 1.into();
assert_eq!(n + 2, 3.into(), "testing that 1 + 2 == 3");
// test multiplication
let n: Num<i32, 8> = 5.into();
assert_eq!(n * 3, 15.into(), "testing that 5 * 3 == 15");
// test division
let n: Num<i32, 8> = 30.into();
let p: Num<i32, 8> = 3.into();
assert_eq!(n / 20, p / 2, "testing that 30 / 20 == 3 / 2");
assert_ne!(n, p, "testing that 30 != 3");
}
#[test]
fn test_division_by_one() {
let one: Num<i32, 8> = 1.into();
for i in -40..40 {
let n: Num<i32, 8> = i.into();
assert_eq!(n / one, n);
}
}
#[test]
fn test_division_and_multiplication_by_16() {
let sixteen: Num<i32, 8> = 16.into();
for i in -40..40 {
let n: Num<i32, 8> = i.into();
let m = n / sixteen;
assert_eq!(m * sixteen, n);
}
}
#[test]
fn test_division_by_2_and_15() {
let two: Num<i32, 8> = 2.into();
let fifteen: Num<i32, 8> = 15.into();
let thirty: Num<i32, 8> = 30.into();
for i in -128..128 {
let n: Num<i32, 8> = i.into();
assert_eq!(n / two / fifteen, n / thirty);
assert_eq!(n / fifteen / two, n / thirty);
}
}
#[test]
fn test_change_base() {
let two: Num<i32, 9> = 2.into();
let three: Num<i32, 4> = 3.into();
assert_eq!(two + three.change_base(), 5.into());
assert_eq!(three + two.change_base(), 5.into());
}
#[test]
fn test_rem_returns_sensible_values_for_integers() {
for i in -50..50 {
for j in -50..50 {
if j == 0 {
continue;
}
let i_rem_j_normally = i % j;
let i_fixnum: Num<i32, 8> = i.into();
assert_eq!(i_fixnum % j, i_rem_j_normally.into());
}
}
}
#[test]
fn test_rem_returns_sensible_values_for_non_integers() {
let one: Num<i32, 8> = 1.into();
let third = one / 3;
for i in -50..50 {
for j in -50..50 {
if j == 0 {
continue;
}
// full calculation in the normal way
let x: Num<i32, 8> = third + i;
let y: Num<i32, 8> = j.into();
let truncated_division: Num<i32, 8> = (x / y).trunc().into();
let remainder = x - truncated_division * y;
assert_eq!(x % y, remainder);
}
}
}
#[test]
fn test_rem_euclid_is_always_positive_and_sensible() {
let one: Num<i32, 8> = 1.into();
let third = one / 3;
for i in -50..50 {
for j in -50..50 {
if j == 0 {
continue;
}
let x: Num<i32, 8> = third + i;
let y: Num<i32, 8> = j.into();
let rem_euclid = x.rem_euclid(y);
assert!(rem_euclid > 0.into());
}
}
}
#[test]
fn test_only_frac_bits() {
let quarter: Num<u8, 8> = num!(0.25);
let neg_quarter: Num<i16, 15> = num!(-0.25);
assert_eq!(quarter + quarter, num!(0.5));
assert_eq!(neg_quarter + neg_quarter, num!(-0.5));
}
#[test]
fn test_vector_multiplication_and_division() {
let a: Vector2D<i32> = (1, 2).into();
let b = a * 5;
let c = b / 5;
assert_eq!(b, (5, 10).into());
assert_eq!(a, c);
}
#[test]
fn magnitude_accuracy() {
let n: Vector2D<Num<i32, 16>> = (3, 4).into();
assert!((n.magnitude() - 5).abs() < num!(0.1));
let n: Vector2D<Num<i32, 8>> = (3, 4).into();
assert!((n.magnitude() - 5).abs() < num!(0.1));
}
#[test]
fn test_vector_changing() {
let v1: Vector2D<FixedNum<8>> = Vector2D::new(1.into(), 2.into());
let v2 = v1.trunc();
assert_eq!(v2.get(), (1, 2));
assert_eq!(v1 + v1, (v2 + v2).into());
}
#[test]
fn test_rect_iter() {
let rect: Rect<i32> = Rect::new((5_i32, 5_i32).into(), (3_i32, 3_i32).into());
assert_eq!(
rect.iter().collect::<alloc::vec::Vec<_>>(),
&[
(5, 5),
(6, 5),
(7, 5),
(5, 6),
(6, 6),
(7, 6),
(5, 7),
(6, 7),
(7, 7),
]
);
}
}