anymap/src/raw.rs

335 lines
11 KiB
Rust
Raw Normal View History

//! The raw form of an AnyMap, allowing untyped access.
//!
//! All relevant details are in the `RawAnyMap` struct.
use std::any::{Any, TypeId};
use std::borrow::Borrow;
use std::collections::hash_map::{self, HashMap};
use std::collections::hash_state::HashState;
use std::default::Default;
use std::hash::{Hash, Hasher};
use std::iter::IntoIterator;
use std::mem;
use std::ops::{Index, IndexMut};
use std::ptr;
struct TypeIdHasher {
value: u64,
}
struct TypeIdState;
impl HashState for TypeIdState {
type Hasher = TypeIdHasher;
fn hasher(&self) -> TypeIdHasher {
TypeIdHasher { value: 0 }
}
}
impl Hasher for TypeIdHasher {
#[inline(always)]
fn write(&mut self, bytes: &[u8]) {
// This expects to receive one and exactly one 64-bit value
debug_assert!(bytes.len() == 8);
unsafe {
ptr::copy_nonoverlapping(&mut self.value, mem::transmute(&bytes[0]), 1)
}
}
#[inline(always)]
fn finish(&self) -> u64 { self.value }
}
/// The raw, underlying form of an AnyMap.
///
/// At its essence, this is a wrapper around `HashMap<TypeId, Box<Any>>`, with the portions that
/// would be memory-unsafe removed or marked unsafe. Normal people are expected to use the safe
/// `AnyMap` interface instead, but there is the occasional use for this such as iteration over the
/// contents of an `AnyMap`. However, because you will then be dealing with `Any` trait objects, it
/// doesnt tend to be so very useful. Still, if you need it, its here.
#[derive(Debug)]
pub struct RawAnyMap {
inner: HashMap<TypeId, Box<Any>, TypeIdState>,
}
impl Default for RawAnyMap {
fn default() -> RawAnyMap {
RawAnyMap::new()
}
}
impl_common_methods! {
field: RawAnyMap.inner;
new() => HashMap::with_hash_state(TypeIdState);
with_capacity(capacity) => HashMap::with_capacity_and_hash_state(capacity, TypeIdState);
}
/// RawAnyMap iterator.
#[derive(Clone)]
pub struct Iter<'a> {
inner: hash_map::Iter<'a, TypeId, Box<Any>>,
}
impl<'a> Iterator for Iter<'a> {
type Item = &'a Any;
#[inline] fn next(&mut self) -> Option<&'a Any> { self.inner.next().map(|x| &**x.1) }
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}
impl<'a> ExactSizeIterator for Iter<'a> {
#[inline] fn len(&self) -> usize { self.inner.len() }
}
/// RawAnyMap mutable iterator.
pub struct IterMut<'a> {
inner: hash_map::IterMut<'a, TypeId, Box<Any>>,
}
impl<'a> Iterator for IterMut<'a> {
type Item = &'a mut Any;
#[inline] fn next(&mut self) -> Option<&'a mut Any> { self.inner.next().map(|x| &mut **x.1) }
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}
impl<'a> ExactSizeIterator for IterMut<'a> {
#[inline] fn len(&self) -> usize { self.inner.len() }
}
/// RawAnyMap move iterator.
pub struct IntoIter {
inner: hash_map::IntoIter<TypeId, Box<Any>>,
}
impl Iterator for IntoIter {
type Item = Box<Any>;
#[inline] fn next(&mut self) -> Option<Box<Any>> { self.inner.next().map(|x| x.1) }
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}
impl ExactSizeIterator for IntoIter {
#[inline] fn len(&self) -> usize { self.inner.len() }
}
/// RawAnyMap drain iterator.
pub struct Drain<'a> {
inner: hash_map::Drain<'a, TypeId, Box<Any>>,
}
impl<'a> Iterator for Drain<'a> {
type Item = Box<Any>;
#[inline] fn next(&mut self) -> Option<Box<Any>> { self.inner.next().map(|x| x.1) }
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}
impl<'a> ExactSizeIterator for Drain<'a> {
#[inline] fn len(&self) -> usize { self.inner.len() }
}
impl RawAnyMap {
/// An iterator visiting all entries in arbitrary order.
///
/// Iterator element type is `&Any`.
#[inline]
pub fn iter(&self) -> Iter {
Iter {
inner: self.inner.iter(),
}
}
/// An iterator visiting all entries in arbitrary order.
///
/// Iterator element type is `&mut Any`.
#[inline]
pub fn iter_mut(&mut self) -> IterMut {
IterMut {
inner: self.inner.iter_mut(),
}
}
/// Creates a consuming iterator, that is, one that moves each item
/// out of the map in arbitrary order. The map cannot be used after
/// calling this.
///
/// Iterator element type is `Box<Any>`.
#[inline]
pub fn into_iter(self) -> IntoIter {
IntoIter {
inner: self.inner.into_iter(),
}
}
/// Clears the map, returning all items as an iterator.
///
/// Iterator element type is `Box<Any>`.
///
/// Keeps the allocated memory for reuse.
#[inline]
pub fn drain(&mut self) -> Drain {
Drain {
inner: self.inner.drain(),
}
}
/// Gets the entry for the given type in the collection for in-place manipulation.
pub fn entry(&mut self, key: TypeId) -> Entry {
match self.inner.entry(key) {
hash_map::Entry::Occupied(e) => Entry::Occupied(OccupiedEntry {
inner: e,
}),
hash_map::Entry::Vacant(e) => Entry::Vacant(VacantEntry {
inner: e,
}),
}
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed
/// form *must* match those for the key type.
pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&Any>
where TypeId: Borrow<Q>, Q: Hash + Eq {
self.inner.get(k).map(|x| &**x)
}
/// Returns true if the map contains a value for the specified key.
///
/// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed
/// form *must* match those for the key type.
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
where TypeId: Borrow<Q>, Q: Hash + Eq {
self.inner.contains_key(k)
}
/// Returns a mutable reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed
/// form *must* match those for the key type.
pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut Any>
where TypeId: Borrow<Q>, Q: Hash + Eq {
self.inner.get_mut(k).map(|x| &mut **x)
}
/// Inserts a key-value pair from the map. If the key already had a value present in the map,
/// that value is returned. Otherwise, None is returned.
///
/// It is the callers responsibility to ensure that the key corresponds with the type ID of
/// the value. If they do not, memory safety may be violated.
pub unsafe fn insert(&mut self, key: TypeId, value: Box<Any>) -> Option<Box<Any>> {
self.inner.insert(key, value)
}
/// Removes a key from the map, returning the value at the key if the key was previously in the
/// map.
///
/// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed
/// form *must* match those for the key type.
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<Box<Any>>
where TypeId: Borrow<Q>, Q: Hash + Eq {
self.inner.remove(k)
}
}
2015-03-25 17:59:11 +11:00
impl<Q> Index<Q> for RawAnyMap where TypeId: Borrow<Q>, Q: Eq + Hash {
type Output = Any;
2015-03-25 17:59:11 +11:00
fn index<'a>(&'a self, index: Q) -> &'a Any {
self.get(&index).expect("no entry found for key")
}
}
2015-03-25 17:59:11 +11:00
impl<Q> IndexMut<Q> for RawAnyMap where TypeId: Borrow<Q>, Q: Eq + Hash {
fn index_mut<'a>(&'a mut self, index: Q) -> &'a mut Any {
self.get_mut(&index).expect("no entry found for key")
}
}
impl IntoIterator for RawAnyMap {
type Item = Box<Any>;
type IntoIter = IntoIter;
fn into_iter(self) -> IntoIter {
self.into_iter()
}
}
/// A view into a single occupied location in a `RawAnyMap`.
pub struct OccupiedEntry<'a> {
inner: hash_map::OccupiedEntry<'a, TypeId, Box<Any>>,
}
/// A view into a single empty location in a `RawAnyMap`.
pub struct VacantEntry<'a> {
inner: hash_map::VacantEntry<'a, TypeId, Box<Any>>,
}
/// A view into a single location in an AnyMap, which may be vacant or occupied.
pub enum Entry<'a> {
/// An occupied Entry
Occupied(OccupiedEntry<'a>),
/// A vacant Entry
Vacant(VacantEntry<'a>),
}
impl<'a> Entry<'a> {
2015-03-25 17:59:11 +11:00
/// Ensures a value is in the entry by inserting the default if empty, and returns
/// a mutable reference to the value in the entry.
///
/// It is the callers responsibility to ensure that the key of the entry corresponds with
/// the type ID of `value`. If they do not, memory safety may be violated.
pub unsafe fn or_insert(self, default: Box<Any>) -> &'a mut Any {
match self {
Entry::Occupied(inner) => inner.into_mut(),
Entry::Vacant(inner) => inner.insert(default),
}
}
/// Ensures a value is in the entry by inserting the result of the default function if empty,
/// and returns a mutable reference to the value in the entry.
///
/// It is the callers responsibility to ensure that the key of the entry corresponds with
/// the type ID of `value`. If they do not, memory safety may be violated.
pub unsafe fn or_insert_with<F: FnOnce() -> Box<Any>>(self, default: F) -> &'a mut Any {
match self {
2015-03-25 17:59:11 +11:00
Entry::Occupied(inner) => inner.into_mut(),
Entry::Vacant(inner) => inner.insert(default()),
}
}
}
impl<'a> OccupiedEntry<'a> {
/// Gets a reference to the value in the entry.
pub fn get(&self) -> &Any {
&**self.inner.get()
}
/// Gets a mutable reference to the value in the entry.
pub fn get_mut(&mut self) -> &mut Any {
&mut **self.inner.get_mut()
}
/// Converts the OccupiedEntry into a mutable reference to the value in the entry
/// with a lifetime bound to the collection itself.
pub fn into_mut(self) -> &'a mut Any {
&mut **self.inner.into_mut()
}
/// Sets the value of the entry, and returns the entry's old value.
///
/// It is the callers responsibility to ensure that the key of the entry corresponds with
/// the type ID of `value`. If they do not, memory safety may be violated.
pub unsafe fn insert(&mut self, value: Box<Any>) -> Box<Any> {
self.inner.insert(value)
}
/// Takes the value out of the entry, and returns it.
pub fn remove(self) -> Box<Any> {
self.inner.remove()
}
}
impl<'a> VacantEntry<'a> {
/// Sets the value of the entry with the VacantEntry's key,
/// and returns a mutable reference to it
///
/// It is the callers responsibility to ensure that the key of the entry corresponds with
/// the type ID of `value`. If they do not, memory safety may be violated.
pub unsafe fn insert(self, value: Box<Any>) -> &'a mut Any {
&mut **self.inner.insert(value)
}
}