//! The raw form of an AnyMap, allowing untyped access. //! //! All relevant details are in the `RawAnyMap` struct. use std::any::TypeId; use std::borrow::Borrow; use std::collections::hash_map::{self, HashMap}; use std::collections::hash_state::HashState; use std::default::Default; use std::hash::{Hash, Hasher}; use std::iter::IntoIterator; use std::mem; use std::ops::{Index, IndexMut}; use std::ptr; #[cfg(not(feature = "clone"))] pub use std::any::Any; #[cfg(feature = "clone")] pub use with_clone::Any; struct TypeIdHasher { value: u64, } #[cfg_attr(feature = "clone", derive(Clone))] struct TypeIdState; impl HashState for TypeIdState { type Hasher = TypeIdHasher; fn hasher(&self) -> TypeIdHasher { TypeIdHasher { value: 0 } } } impl Hasher for TypeIdHasher { #[inline(always)] fn write(&mut self, bytes: &[u8]) { // This expects to receive one and exactly one 64-bit value debug_assert!(bytes.len() == 8); unsafe { ptr::copy_nonoverlapping(&mut self.value, mem::transmute(&bytes[0]), 1) } } #[inline(always)] fn finish(&self) -> u64 { self.value } } /// The raw, underlying form of an AnyMap. /// /// At its essence, this is a wrapper around `HashMap>`, with the portions that /// would be memory-unsafe removed or marked unsafe. Normal people are expected to use the safe /// `AnyMap` interface instead, but there is the occasional use for this such as iteration over the /// contents of an `AnyMap`. However, because you will then be dealing with `Any` trait objects, it /// doesn’t tend to be so very useful. Still, if you need it, it’s here. #[derive(Debug)] #[cfg_attr(feature = "clone", derive(Clone))] pub struct RawAnyMap { inner: HashMap, TypeIdState>, } impl Default for RawAnyMap { fn default() -> RawAnyMap { RawAnyMap::new() } } impl_common_methods! { field: RawAnyMap.inner; new() => HashMap::with_hash_state(TypeIdState); with_capacity(capacity) => HashMap::with_capacity_and_hash_state(capacity, TypeIdState); } /// RawAnyMap iterator. #[derive(Clone)] pub struct Iter<'a> { inner: hash_map::Iter<'a, TypeId, Box>, } impl<'a> Iterator for Iter<'a> { type Item = &'a Any; #[inline] fn next(&mut self) -> Option<&'a Any> { self.inner.next().map(|x| &**x.1) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl<'a> ExactSizeIterator for Iter<'a> { #[inline] fn len(&self) -> usize { self.inner.len() } } /// RawAnyMap mutable iterator. pub struct IterMut<'a> { inner: hash_map::IterMut<'a, TypeId, Box>, } impl<'a> Iterator for IterMut<'a> { type Item = &'a mut Any; #[inline] fn next(&mut self) -> Option<&'a mut Any> { self.inner.next().map(|x| &mut **x.1) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl<'a> ExactSizeIterator for IterMut<'a> { #[inline] fn len(&self) -> usize { self.inner.len() } } /// RawAnyMap move iterator. pub struct IntoIter { inner: hash_map::IntoIter>, } impl Iterator for IntoIter { type Item = Box; #[inline] fn next(&mut self) -> Option> { self.inner.next().map(|x| x.1) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl ExactSizeIterator for IntoIter { #[inline] fn len(&self) -> usize { self.inner.len() } } /// RawAnyMap drain iterator. pub struct Drain<'a> { inner: hash_map::Drain<'a, TypeId, Box>, } impl<'a> Iterator for Drain<'a> { type Item = Box; #[inline] fn next(&mut self) -> Option> { self.inner.next().map(|x| x.1) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl<'a> ExactSizeIterator for Drain<'a> { #[inline] fn len(&self) -> usize { self.inner.len() } } impl RawAnyMap { /// An iterator visiting all entries in arbitrary order. /// /// Iterator element type is `&Any`. #[inline] pub fn iter(&self) -> Iter { Iter { inner: self.inner.iter(), } } /// An iterator visiting all entries in arbitrary order. /// /// Iterator element type is `&mut Any`. #[inline] pub fn iter_mut(&mut self) -> IterMut { IterMut { inner: self.inner.iter_mut(), } } /// Creates a consuming iterator, that is, one that moves each item /// out of the map in arbitrary order. The map cannot be used after /// calling this. /// /// Iterator element type is `Box`. #[inline] pub fn into_iter(self) -> IntoIter { IntoIter { inner: self.inner.into_iter(), } } /// Clears the map, returning all items as an iterator. /// /// Iterator element type is `Box`. /// /// Keeps the allocated memory for reuse. #[inline] pub fn drain(&mut self) -> Drain { Drain { inner: self.inner.drain(), } } /// Gets the entry for the given type in the collection for in-place manipulation. pub fn entry(&mut self, key: TypeId) -> Entry { match self.inner.entry(key) { hash_map::Entry::Occupied(e) => Entry::Occupied(OccupiedEntry { inner: e, }), hash_map::Entry::Vacant(e) => Entry::Vacant(VacantEntry { inner: e, }), } } /// Returns a reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed /// form *must* match those for the key type. pub fn get(&self, k: &Q) -> Option<&Any> where TypeId: Borrow, Q: Hash + Eq { self.inner.get(k).map(|x| &**x) } /// Returns true if the map contains a value for the specified key. /// /// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed /// form *must* match those for the key type. pub fn contains_key(&self, k: &Q) -> bool where TypeId: Borrow, Q: Hash + Eq { self.inner.contains_key(k) } /// Returns a mutable reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed /// form *must* match those for the key type. pub fn get_mut(&mut self, k: &Q) -> Option<&mut Any> where TypeId: Borrow, Q: Hash + Eq { self.inner.get_mut(k).map(|x| &mut **x) } /// Inserts a key-value pair from the map. If the key already had a value present in the map, /// that value is returned. Otherwise, None is returned. /// /// It is the caller’s responsibility to ensure that the key corresponds with the type ID of /// the value. If they do not, memory safety may be violated. pub unsafe fn insert(&mut self, key: TypeId, value: Box) -> Option> { self.inner.insert(key, value) } /// Removes a key from the map, returning the value at the key if the key was previously in the /// map. /// /// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed /// form *must* match those for the key type. pub fn remove(&mut self, k: &Q) -> Option> where TypeId: Borrow, Q: Hash + Eq { self.inner.remove(k) } } impl Index for RawAnyMap where TypeId: Borrow, Q: Eq + Hash { type Output = Any; fn index<'a>(&'a self, index: Q) -> &'a Any { self.get(&index).expect("no entry found for key") } } impl IndexMut for RawAnyMap where TypeId: Borrow, Q: Eq + Hash { fn index_mut<'a>(&'a mut self, index: Q) -> &'a mut Any { self.get_mut(&index).expect("no entry found for key") } } impl IntoIterator for RawAnyMap { type Item = Box; type IntoIter = IntoIter; fn into_iter(self) -> IntoIter { self.into_iter() } } /// A view into a single occupied location in a `RawAnyMap`. pub struct OccupiedEntry<'a> { inner: hash_map::OccupiedEntry<'a, TypeId, Box>, } /// A view into a single empty location in a `RawAnyMap`. pub struct VacantEntry<'a> { inner: hash_map::VacantEntry<'a, TypeId, Box>, } /// A view into a single location in an AnyMap, which may be vacant or occupied. pub enum Entry<'a> { /// An occupied Entry Occupied(OccupiedEntry<'a>), /// A vacant Entry Vacant(VacantEntry<'a>), } impl<'a> Entry<'a> { /// Ensures a value is in the entry by inserting the default if empty, and returns /// a mutable reference to the value in the entry. /// /// It is the caller’s responsibility to ensure that the key of the entry corresponds with /// the type ID of `value`. If they do not, memory safety may be violated. pub unsafe fn or_insert(self, default: Box) -> &'a mut Any { match self { Entry::Occupied(inner) => inner.into_mut(), Entry::Vacant(inner) => inner.insert(default), } } /// Ensures a value is in the entry by inserting the result of the default function if empty, /// and returns a mutable reference to the value in the entry. /// /// It is the caller’s responsibility to ensure that the key of the entry corresponds with /// the type ID of `value`. If they do not, memory safety may be violated. pub unsafe fn or_insert_with Box>(self, default: F) -> &'a mut Any { match self { Entry::Occupied(inner) => inner.into_mut(), Entry::Vacant(inner) => inner.insert(default()), } } } impl<'a> OccupiedEntry<'a> { /// Gets a reference to the value in the entry. pub fn get(&self) -> &Any { &**self.inner.get() } /// Gets a mutable reference to the value in the entry. pub fn get_mut(&mut self) -> &mut Any { &mut **self.inner.get_mut() } /// Converts the OccupiedEntry into a mutable reference to the value in the entry /// with a lifetime bound to the collection itself. pub fn into_mut(self) -> &'a mut Any { &mut **self.inner.into_mut() } /// Sets the value of the entry, and returns the entry's old value. /// /// It is the caller’s responsibility to ensure that the key of the entry corresponds with /// the type ID of `value`. If they do not, memory safety may be violated. pub unsafe fn insert(&mut self, value: Box) -> Box { self.inner.insert(value) } /// Takes the value out of the entry, and returns it. pub fn remove(self) -> Box { self.inner.remove() } } impl<'a> VacantEntry<'a> { /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it /// /// It is the caller’s responsibility to ensure that the key of the entry corresponds with /// the type ID of `value`. If they do not, memory safety may be violated. pub unsafe fn insert(self, value: Box) -> &'a mut Any { &mut **self.inner.insert(value) } }