use crate::{FACTOR, HEIGHT, WIDTH}; use super::{clear_bit, get_bit, set_bit, set_or_clear_bit, CPU}; #[derive(PartialEq)] enum DrawMode { HBlank, VBlank, Mode2, Mode3, } enum TilemapArea { T9800, T9C00, } enum TiledataArea { D8000, D8800, } enum ObjSize { S8x8, S8x16, } struct LCDC { enable: bool, window_tilemap: TilemapArea, window_enable: bool, tile_area: TiledataArea, bg_tilemap: TilemapArea, obj_size: ObjSize, obj_enable: bool, bg_window_enable: bool, } #[derive(Clone, Copy)] enum Colour { White, LightGray, DarkGray, Black, } impl Colour { fn to_rgb(&self) -> u32 { match self { Colour::White => Self::from_u8_rgb(255, 255, 255), Colour::LightGray => Self::from_u8_rgb(190, 190, 190), Colour::DarkGray => Self::from_u8_rgb(110, 110, 110), Colour::Black => Self::from_u8_rgb(20, 20, 20), } } fn from_u8_rgb(r: u8, g: u8, b: u8) -> u32 { let (r, g, b) = (r as u32, g as u32, b as u32); (r << 16) | (g << 8) | b } } #[derive(Clone, Copy)] struct Palette { zero: Colour, one: Colour, two: Colour, three: Colour, } pub struct GPU { pub buffer: Vec, scaled_buffer: Vec, mode: DrawMode, mode_clock: usize, scanline: u8, } impl Default for GPU { fn default() -> Self { Self { buffer: vec![0; WIDTH * HEIGHT], scaled_buffer: vec![0; WIDTH * HEIGHT * 4], mode: DrawMode::Mode2, mode_clock: 0, scanline: 0, } } } impl CPU { pub fn advance_gpu_clock(&mut self, steps: u8) { let real_steps = (steps as usize) * 4; self.gpu.mode_clock += real_steps; let lcdc = self.get_lcdc(); match self.gpu.mode { DrawMode::HBlank => { // mode 0: hblank if self.gpu.mode_clock >= 204 { self.gpu.mode_clock = 0; self.gpu.scanline += 1; if self.gpu.scanline == 143 { self.enter_vblank(&lcdc); } else { self.gpu.mode = DrawMode::Mode2; } } } DrawMode::VBlank => { // mode 1: vblank if self.gpu.mode_clock >= 456 { self.gpu.mode_clock = 0; self.gpu.scanline += 1; if self.gpu.scanline == 153 { self.exit_vblank(); } } } DrawMode::Mode2 => { // search oam for sprites on this line // we dont really have to emulate this if self.gpu.mode_clock >= 80 { self.gpu.mode_clock = 0; self.gpu.mode = DrawMode::Mode3; } } DrawMode::Mode3 => { // generate scanline if self.gpu.mode_clock >= 172 { self.gpu.mode_clock = 0; self.enter_hblank(&lcdc); } } } self.set_lcd_status(); } fn get_lcdc(&self) -> LCDC { let reg = self.memory.get(0xFF40); LCDC { enable: get_bit(reg, 7), window_tilemap: if get_bit(reg, 6) { TilemapArea::T9C00 } else { TilemapArea::T9800 }, window_enable: get_bit(reg, 5), tile_area: if get_bit(reg, 4) { TiledataArea::D8000 } else { TiledataArea::D8800 }, bg_tilemap: if get_bit(reg, 3) { TilemapArea::T9C00 } else { TilemapArea::T9800 }, obj_size: if get_bit(reg, 2) { ObjSize::S8x16 } else { ObjSize::S8x8 }, obj_enable: get_bit(reg, 1), bg_window_enable: get_bit(reg, 0), } } fn enter_hblank(&mut self, lcdc: &LCDC) { self.gpu.mode = DrawMode::HBlank; self.render_scanline(self.gpu.scanline, lcdc); } fn enter_vblank(&mut self, lcdc: &LCDC) { self.gpu.mode = DrawMode::VBlank; if lcdc.enable { self.render_window(); self.memory.set(0xFF0F, set_bit(self.memory.get(0xFF0F), 0)); } } fn exit_vblank(&mut self) { self.gpu.mode = DrawMode::Mode2; self.gpu.scanline = 0; // self.memory // .set(0xFF0F, clear_bit(self.memory.get(0xFF0F), 0)); } fn set_lcd_status(&mut self) { let mut stat = self.memory.get(0xFF41); stat = set_or_clear_bit(stat, 2, self.memory.get(0xFF44) == self.memory.get(0xFF45)); stat = set_or_clear_bit( stat, 1, (self.gpu.mode == DrawMode::Mode2) || (self.gpu.mode == DrawMode::Mode3), ); stat = set_or_clear_bit( stat, 0, (self.gpu.mode == DrawMode::VBlank) || (self.gpu.mode == DrawMode::Mode3), ); self.memory.set(0xFF41, stat); self.memory.set(0xFF44, self.gpu.scanline); // println!("set scanline to {}", self.memory.get(0xFF44)); } fn render_scanline(&mut self, scanline: u8, lcdc: &LCDC) { if lcdc.bg_window_enable { self.render_scanline_bg(scanline, lcdc); if lcdc.window_enable { self.render_scanline_window(scanline, lcdc); } } if lcdc.obj_enable { self.render_scanline_obj(scanline, lcdc); } } fn render_scanline_bg(&mut self, scanline: u8, lcdc: &LCDC) { let scroll_y = self.memory.get(0xFF42); let scroll_x = self.memory.get(0xFF43); let palette = byte_to_palette(self.memory.get(0xFF47)); self.render_tiles(scanline, &lcdc.bg_tilemap, palette); } fn render_scanline_window(&mut self, _scanline: u8, _lcdc: &LCDC) { let pos_y = self.memory.get(0xFF4A); // subtracting 7 to get the Real Number... let pos_x = self.memory.get(0xFF4B).wrapping_sub(7); if pos_y < 143 && pos_x < 166 { // within range!! render here } } fn render_scanline_obj(&mut self, _scanline: u8, _lcdc: &LCDC) {} fn render_tiles(&mut self, scanline: u8, tilemap: &TilemapArea, palette: Palette) { let tile_row = (scanline as usize) / 8; let row_addr = (tile_row * 32) as u16 + get_tilemap_offset(tilemap); for x in 0..32 { let lsbs = self.memory.get(row_addr + (x * 2)); let msbs = self.memory.get(row_addr + (x * 2) + 1); for px_x in 0..8 { let lsb = get_bit(lsbs, px_x); let msb = get_bit(msbs, px_x); let colour = bits_to_mapped_colour(lsb, msb, palette); let x_coord = ((x * 8) + (px_x as u16)) as usize; if x_coord < WIDTH { self.gpu.buffer[(scanline as usize * WIDTH) + x_coord] = colour.to_rgb(); } } } } fn render_window(&mut self) { self.gpu.scaled_buffer = scale_buffer(&self.gpu.buffer, WIDTH, HEIGHT, FACTOR); self.window .update_with_buffer(&self.gpu.scaled_buffer, WIDTH * FACTOR, HEIGHT * FACTOR) .unwrap(); } } fn scale_buffer(buffer: &Vec, width: usize, height: usize, factor: usize) -> Vec { let mut v = vec![]; for y in 0..height { for _ in 0..factor { for x in 0..width { for _ in 0..factor { v.push(buffer[(y * width) + x]); } } } } v } fn get_tilemap_offset(tilemap: &TilemapArea) -> u16 { match tilemap { TilemapArea::T9800 => 0x9800, TilemapArea::T9C00 => 0x9C00, } } fn bits_to_mapped_colour(lsb: bool, msb: bool, palette: Palette) -> Colour { match (lsb, msb) { (true, true) => palette.three, (true, false) => palette.one, (false, true) => palette.two, (false, false) => palette.zero, } } fn byte_to_palette(byte: u8) -> Palette { Palette { zero: bits_to_colour(get_bit(byte, 0), get_bit(byte, 1)), one: bits_to_colour(get_bit(byte, 2), get_bit(byte, 3)), two: bits_to_colour(get_bit(byte, 4), get_bit(byte, 5)), three: bits_to_colour(get_bit(byte, 6), get_bit(byte, 7)), } } fn bits_to_colour(first: bool, second: bool) -> Colour { match (first, second) { (true, true) => Colour::Black, (true, false) => Colour::DarkGray, (false, true) => Colour::LightGray, (false, false) => Colour::White, } }