gb-emu/src/processor/mod.rs
2023-02-07 09:12:39 +11:00

305 lines
7.7 KiB
Rust

use self::gpu::GPU;
use self::memory::Memory;
use crate::{processor::instructions::instructions::set, verbose_println};
use minifb::Window;
use std::{mem::transmute, time::Duration};
pub mod gpu;
mod instructions;
pub mod memory;
mod opcodes;
#[derive(PartialEq)]
pub(crate) enum Flags {
Zero = 7,
NSubtract = 6,
HalfCarry = 5,
Carry = 4,
}
pub(crate) enum Direction {
Left,
Right,
}
pub struct CPU {
pub memory: Memory,
pub reg: Registers,
pub last_instruction: u8,
pub last_instruction_addr: u16,
pub window: Window,
pub gpu: GPU,
}
// Hz
const CLOCK_SPEED: f64 = 4.194304 * 1000000.;
const SPEEDUP: f64 = 1.;
const FF04_SPEED: f64 = 16384.;
impl CPU {
pub fn new(memory: Memory, window: Window) -> Self {
Self {
memory,
reg: Registers::default(),
last_instruction: 0x0,
last_instruction_addr: 0x0,
window,
gpu: GPU::default(),
}
}
pub fn exec_next(&mut self) {
self.last_instruction_addr = self.reg.pc;
let opcode = self.next_opcode();
self.last_instruction = opcode;
if self.memory.ime_scheduled > 0 {
self.memory.ime_scheduled = self.memory.ime_scheduled.saturating_sub(1);
if self.memory.ime_scheduled == 0 {
self.memory.ime = true;
}
}
verbose_println!(
"exec {:#4X} from pc: {:#X}",
opcode,
self.last_instruction_addr
);
self.memory.user_mode = true;
let cycles = self.run_opcode(opcode);
self.memory.user_mode = false;
self.increment_timers(cycles);
let interrupt_cycles = self.handle_interrupts();
self.increment_timers(interrupt_cycles);
}
fn increment_timers(&mut self, cycles: u8) {
let secs = (cycles * 4) as f64 / CLOCK_SPEED;
self.advance_gpu_clock(cycles);
self.memory.set(
0xFF04,
self.memory
.get(0xFF04)
.wrapping_add((FF04_SPEED * secs) as u8),
);
let (timer_enabled, timer_rate) = self.timer_scale();
if timer_enabled {
let (val, wrap) = self
.memory
.get(0xFF05)
.overflowing_add((secs * timer_rate as f64) as u8);
if wrap {
self.memory.set(0xFF05, self.memory.get(0xFF06));
self.memory.set(0xFF0F, set(self.memory.get(0xFF0F), 2));
} else {
self.memory.set(0xFF05, val);
}
}
spin_sleep::sleep(Duration::from_secs_f64(secs / SPEEDUP));
}
fn next_opcode(&mut self) -> u8 {
let opcode = self.memory.get(self.reg.pc);
self.reg.pc = self.reg.pc.wrapping_add(0x1);
return opcode;
}
fn handle_interrupts(&mut self) -> u8 {
if self.memory.ime {
let req_and_enabled = self.memory.get(0xFF0F) & self.memory.get(0xFFFF);
// all interrupts should last 5 cycles?
if get_bit(req_and_enabled, 0) {
// vblank
self.service_interrupt(0x40);
self.memory
.set(0xFF0F, clear_bit(self.memory.get(0xFF0F), 0));
5
} else if get_bit(req_and_enabled, 1) {
// lcd stat
self.service_interrupt(0x48);
self.memory
.set(0xFF0F, clear_bit(self.memory.get(0xFF0F), 1));
5
} else if get_bit(req_and_enabled, 2) {
// timer
self.service_interrupt(0x50);
self.memory
.set(0xFF0F, clear_bit(self.memory.get(0xFF0F), 2));
5
} else if get_bit(req_and_enabled, 3) {
// serial
self.service_interrupt(0x58);
self.memory
.set(0xFF0F, clear_bit(self.memory.get(0xFF0F), 3));
5
} else if get_bit(req_and_enabled, 4) {
// joypad
self.service_interrupt(0x60);
self.memory
.set(0xFF0F, clear_bit(self.memory.get(0xFF0F), 4));
5
} else {
0
}
} else {
0
}
}
fn service_interrupt(&mut self, addr: u16) {
self.push(self.reg.pc);
self.reg.pc = addr;
self.memory.ime = false;
}
fn timer_scale(&self) -> (bool, usize) {
let timer_control = self.memory.get(0xFF07);
let timer_enable = get_bit(timer_control, 2);
let timer_rate = match (get_bit(timer_control, 1), get_bit(timer_control, 0)) {
(true, true) => 256,
(true, false) => 64,
(false, true) => 16,
(false, false) => 1024,
};
(timer_enable, timer_rate)
}
}
#[derive(Clone, Copy)]
pub enum Reg8 {
A,
B,
C,
D,
E,
H,
L,
}
#[derive(Clone, Copy)]
pub struct Registers {
pub af: u16,
pub bc: u16,
pub de: u16,
pub hl: u16,
pub sp: u16,
pub pc: u16,
}
impl Default for Registers {
fn default() -> Self {
// default post-bootrom values
Self {
af: 0x00B0,
// af: 0x01B0,
bc: 0x0013,
de: 0x00D8,
hl: 0x014D,
sp: 0xFFFE,
pc: 0x0000,
}
}
}
impl Registers {
fn get_8(&self, register: Reg8) -> u8 {
match register {
Reg8::A => self.af.get_high(),
Reg8::B => self.bc.get_high(),
Reg8::C => self.bc.get_low(),
Reg8::D => self.de.get_high(),
Reg8::E => self.de.get_low(),
Reg8::H => self.hl.get_high(),
Reg8::L => self.hl.get_low(),
}
}
fn set_8(&mut self, register: Reg8, val: u8) {
match register {
Reg8::A => self.af.set_high(val),
Reg8::B => self.bc.set_high(val),
Reg8::C => self.bc.set_low(val),
Reg8::D => self.de.set_high(val),
Reg8::E => self.de.set_low(val),
Reg8::H => self.hl.set_high(val),
Reg8::L => self.hl.set_low(val),
}
}
}
trait SplitRegister {
fn get_low(&self) -> u8;
fn get_high(&self) -> u8;
fn set_low(&mut self, val: u8);
fn set_high(&mut self, val: u8);
}
impl SplitRegister for u16 {
fn get_low(&self) -> u8 {
(*self & 0xFF) as u8
}
fn get_high(&self) -> u8 {
((*self >> 8) & 0xFF) as u8
}
fn set_low(&mut self, val: u8) {
*self = (*self & !0xff) | val as u16;
}
fn set_high(&mut self, val: u8) {
*self = (*self & !0xff00) | (val as u16) << 8;
}
}
fn as_signed(unsigned: u8) -> i8 {
unsafe {
return transmute(unsigned);
}
}
fn get_bit(byte: u8, flag: u8) -> bool {
let mask = 1 << flag;
let got = byte & mask;
return got > 0x0;
}
fn set_or_clear_bit(byte: u8, flag: u8, condition: bool) -> u8 {
if condition {
set_bit(byte, flag)
} else {
clear_bit(byte, flag)
}
}
fn set_bit(byte: u8, flag: u8) -> u8 {
byte | (1 << flag)
}
fn clear_bit(byte: u8, flag: u8) -> u8 {
byte & (!(1 << flag))
}
fn rotate(byte: u8, direction: &Direction) -> (u8, bool) {
match direction {
Direction::Left => {
let carry = get_bit(byte, 7);
let r = byte << 1;
return (r, carry);
}
Direction::Right => {
let carry = get_bit(byte, 0);
let r = byte >> 1;
return (r, carry);
}
}
}
fn get_rotation_carry(direction: &Direction) -> u8 {
match direction {
Direction::Left => 0b1,
Direction::Right => 0b10000000,
}
}