gb-emu/src/main.rs
2023-01-22 09:33:18 +11:00

345 lines
9.4 KiB
Rust

#![feature(exclusive_range_pattern)]
mod processor;
use clap::Parser;
use processor::CPU;
use std::{
fs,
io::{self, stdout, Write},
};
/// Simple program to greet a person
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// ROM path
#[arg(short, long)]
rom: String,
/// BootROM path
#[arg(short, long)]
bootrom: String,
/// Just run BootROM
#[arg(long)]
run_bootrom: bool,
/// Step emulation by...
#[arg(long)]
step_by: Option<usize>,
}
type Address = u16;
type ROM = Vec<u8>;
#[derive(Clone, Copy)]
struct Inner {
left: u8,
right: u8,
}
#[derive(Clone, Copy)]
union Register {
as_u8s: Inner,
as_u16: u16,
}
#[allow(dead_code)]
pub struct Memory {
bootrom: ROM,
bootrom_enabled: bool,
interrupt_table: [u8; 256],
rom: ROM,
vram: [u8; 8192],
ram: [u8; 8192],
switchable_ram: [u8; 8192],
cpu_ram: [u8; 128],
oam: [u8; 160],
interrupts: u8,
ime: bool,
io: [u8; 76],
}
impl Memory {
fn init(bootrom: ROM, bootrom_enabled: bool, rom: ROM) -> Self {
Self {
bootrom,
bootrom_enabled,
interrupt_table: [0xFF; 256],
rom,
vram: [0x0; 8192],
ram: [0x0; 8192],
switchable_ram: [0x0; 8192],
cpu_ram: [0x0; 128],
oam: [0x0; 160],
interrupts: 0x0,
ime: false,
io: [0xFF; 76],
}
}
fn get(&self, address: Address) -> u8 {
match address {
0x0..0x100 => {
if self.bootrom_enabled {
return self.bootrom[address as usize];
} else {
return self.interrupt_table[address as usize];
}
}
0x100..0x8000 => {
// rom access
// todo - switchable rom banks
if self.bootrom_enabled && (address as usize) < self.bootrom.len() {
return self.bootrom[address as usize];
} else {
return self.rom[address as usize];
}
}
0x8000..0xA000 => {
return self.vram[(address - 0x8000) as usize];
}
0xA000..0xC000 => 0xFF,
0xC000..0xE000 => {
return self.ram[(address - 0xC000) as usize];
}
0xE000..0xFE00 => {
return self.ram[(address - 0xE000) as usize];
}
0xFE00..0xFEA0 => {
return self.oam[(address - 0xFE00) as usize];
}
0xFEA0..0xFF00 => {
return 0x0;
}
0xFF00..0xFF4C => {
return self.io[(address - 0xFF00) as usize];
}
0xFF4C..0xFF80 => {
// println!("empty space 2 read");
return 0xFF;
}
0xFF80..0xFFFF => {
return self.cpu_ram[(address - 0xFF80) as usize];
}
0xFFFF => {
return self.interrupts;
}
}
}
fn set(&mut self, address: Address, data: u8) {
println!("write addr: {:#X}, data: {:#X}", address, data);
match address {
0x0..0x100 => {
if !self.bootrom_enabled {
self.interrupt_table[address as usize] = data;
// panic!("setting {:#X} to {:#X}", address, data)
}
}
0x100..0x8000 => {
// change this with MBC code...
// println!("tried to write {:#5X} at {:#X}", data, address);
}
0x8000..0xA000 => {
self.vram[(address - 0x8000) as usize] = data;
}
0xA000..0xC000 => {
// panic!("switchable write");
// self.switchable_ram[(address - 0xA000) as usize] = data;
}
0xC000..0xE000 => {
self.ram[(address - 0xC000) as usize] = data;
}
0xE000..0xFE00 => {
self.ram[(address - 0xE000) as usize] = data;
}
0xFE00..0xFEA0 => {
self.oam[(address - 0xFE00) as usize] = data;
}
0xFEA0..0xFF00 => {
// println!("empty space write: {:#X} to addr {:#X}", data, address);
}
0xFF00..0xFF4C => {
print!("writing to addr {:#X}\r", address);
stdout().flush().unwrap();
if address == 0xFF02 && data == 0x81 {
print!("{}", self.get(0xFF01) as char);
stdout().flush().unwrap();
}
self.io[(address - 0xFF00) as usize] = data;
}
0xFF4C..0xFF80 => {
// println!("empty space 2 write: {:#X} to addr {:#X}", data, address);
}
0xFF80..0xFFFF => {
self.cpu_ram[(address - 0xFF80) as usize] = data;
}
0xFFFF => {
println!("interrupts set to {:#b}", data);
println!(" / {:#X}", data);
self.interrupts = data;
}
}
}
}
#[derive(Clone, Copy)]
pub struct State {
af: Register,
bc: Register,
de: Register,
hl: Register,
sp: Register,
pc: Register,
}
impl Default for State {
fn default() -> Self {
// default post-bootrom values
Self {
af: Register { as_u16: 0x00B0 },
// af: Register { as_u16: 0x01B0 },
bc: Register { as_u16: 0x0013 },
de: Register { as_u16: 0x00D8 },
hl: Register { as_u16: 0x014D },
sp: Register { as_u16: 0xFFFE },
pc: Register { as_u16: 0x0100 },
}
}
}
fn cpu_ram_init(cpu: &mut CPU) {
cpu.memory.set(0xFF10, 0x80);
cpu.memory.set(0xFF11, 0xBF);
cpu.memory.set(0xFF12, 0xF3);
cpu.memory.set(0xFF14, 0xBF);
cpu.memory.set(0xFF16, 0x3F);
cpu.memory.set(0xFF19, 0xBF);
cpu.memory.set(0xFF1A, 0x7F);
cpu.memory.set(0xFF1B, 0xFF);
cpu.memory.set(0xFF1C, 0x9F);
cpu.memory.set(0xFF1E, 0xBF);
cpu.memory.set(0xFF20, 0xFF);
cpu.memory.set(0xFF23, 0xBF);
cpu.memory.set(0xFF24, 0x77);
cpu.memory.set(0xFF25, 0xF3);
cpu.memory.set(0xFF26, 0xF1);
cpu.memory.set(0xFF40, 0x91);
cpu.memory.set(0xFF47, 0xFC);
cpu.memory.set(0xFF48, 0xFF);
cpu.memory.set(0xFF49, 0xFF);
}
#[allow(dead_code)]
fn swap_rom_endian(rom: &ROM) -> ROM {
rom.chunks(2)
.map(|l| {
let mut m = l.to_owned();
m.reverse();
m
})
.flatten()
.collect()
}
static mut PAUSE_ENABLED: bool = false;
static mut PAUSE_QUEUED: bool = false;
fn main() {
let args = Args::parse();
let rom: ROM = fs::read(args.rom).expect("Could not load ROM");
let bootrom: ROM = fs::read(args.bootrom).expect("Could not load BootROM");
let mut state = State::default();
if args.run_bootrom {
state.pc = Register { as_u16: 0x0 };
}
let mut cpu = CPU {
memory: Memory::init(bootrom, args.run_bootrom, rom),
state,
last_instruction: 0x0,
last_instruction_addr: 0x0,
};
cpu_ram_init(&mut cpu);
#[allow(unused_variables)]
let mut cycle_num = 0;
let mut instructions_seen = vec![];
let mut last_state = cpu.state.clone();
let mut next_state: State;
match args.step_by {
Some(step_size) => loop {
for _ in 0..step_size {
cycle_num += 1;
cpu.exec_next();
println!(
"exec {:#4X} from {:#4X}",
cpu.last_instruction, cpu.last_instruction_addr
);
}
print!(
" ...{} cycles - press enter to continue\r",
cycle_num
);
stdout().flush().unwrap();
pause();
},
None => loop {
let will_pause;
unsafe {
will_pause = PAUSE_QUEUED.clone();
}
cycle_num += 1;
// print_cycles(&cycle_num);
cpu.exec_next();
unsafe {
next_state = cpu.state;
if !PAUSE_ENABLED {
if next_state.pc.as_u16 >= 0x100 {
PAUSE_ENABLED = true;
}
}
last_state = next_state;
if will_pause {
pause();
}
}
match instructions_seen.contains(&cpu.last_instruction) {
true => {}
false => {
// println!("new instruction enountered: {:#X}", cpu.last_instruction);
instructions_seen.push(cpu.last_instruction);
}
}
},
}
}
#[allow(dead_code)]
fn pause() {
unsafe {
if PAUSE_ENABLED {
let line = &mut String::new();
io::stdin().read_line(line).unwrap();
PAUSE_QUEUED = !line.contains("continue");
}
}
}
#[allow(dead_code)]
fn print_cycles(cycles: &i32) {
if *cycles % 456789 != 0 {
return;
}
let instructions_per_second = 400000;
print!(
"cycle {} - approx {} seconds on real hardware\r",
cycles,
cycles / instructions_per_second
);
stdout().flush().unwrap();
}