gba/examples/irq.rs

148 lines
3.7 KiB
Rust
Raw Normal View History

#![no_std]
#![feature(start)]
use gba::{
io::{
display::{DisplayControlSetting, DisplayMode, DisplayStatusSetting, DISPCNT, DISPSTAT},
irq::{self, IrqEnableSetting, IrqFlags, BIOS_IF, IE, IME},
keypad::read_key_input,
timers::{TimerControlSetting, TimerTickRate, TM0CNT_H, TM0CNT_L, TM1CNT_H, TM1CNT_L},
},
vram::bitmap::Mode3,
Color,
};
const BLACK: Color = Color::from_rgb(0, 0, 0);
const RED: Color = Color::from_rgb(31, 0, 0);
const GREEN: Color = Color::from_rgb(0, 31, 0);
const BLUE: Color = Color::from_rgb(0, 0, 31);
const YELLOW: Color = Color::from_rgb(31, 31, 0);
const PINK: Color = Color::from_rgb(31, 0, 31);
#[panic_handler]
fn panic(_info: &core::panic::PanicInfo) -> ! {
loop {}
}
fn start_timers() {
let init_val: u16 = u32::wrapping_sub(0x1_0000, 64) as u16;
2019-02-15 13:39:34 +11:00
const TIMER_SETTINGS: TimerControlSetting =
TimerControlSetting::new().with_overflow_irq(true).with_enabled(true);
TM0CNT_L.write(init_val);
TM0CNT_H.write(TIMER_SETTINGS.with_tick_rate(TimerTickRate::CPU1024));
TM1CNT_L.write(init_val);
TM1CNT_H.write(TIMER_SETTINGS.with_tick_rate(TimerTickRate::CPU64));
}
#[start]
fn main(_argc: isize, _argv: *const *const u8) -> isize {
DISPCNT.write(DisplayControlSetting::new().with_mode(DisplayMode::Mode3).with_bg2(true));
Mode3::clear_to(BLACK);
// Set the IRQ handler to use.
irq::set_irq_handler(irq_handler);
// Enable all interrupts that are set in the IE register.
IME.write(IrqEnableSetting::UseIE);
// Request that VBlank, HBlank and VCount will generate IRQs.
const DISPLAY_SETTINGS: DisplayStatusSetting = DisplayStatusSetting::new()
.with_vblank_irq_enable(true)
.with_hblank_irq_enable(true)
.with_vcounter_irq_enable(true);
DISPSTAT.write(DISPLAY_SETTINGS);
// Start two timers with overflow IRQ generation.
start_timers();
loop {
let this_frame_keys = read_key_input();
// The VBlank IRQ must be enabled at minimum, or else the CPU will halt
// at the call to vblank_interrupt_wait() as the VBlank IRQ will never
// be triggered.
let mut flags = IrqFlags::new().with_vblank(true);
// Enable interrupts based on key input.
if this_frame_keys.a() {
flags = flags.with_hblank(true);
}
if this_frame_keys.b() {
flags = flags.with_vcounter(true);
}
if this_frame_keys.l() {
flags = flags.with_timer0(true);
}
if this_frame_keys.r() {
flags = flags.with_timer1(true);
}
IE.write(flags);
// Puts the CPU into low power mode until a VBlank IRQ is received. This
// will yield considerably better power efficiency as opposed to spin
// waiting.
gba::bios::vblank_interrupt_wait();
}
}
static mut PIXEL: usize = 0;
fn write_pixel(color: Color) {
unsafe {
2019-02-15 13:39:34 +11:00
Mode3::write(PIXEL, 0, color);
PIXEL = (PIXEL + 1) % (Mode3::WIDTH * Mode3::HEIGHT);
}
}
extern "C" fn irq_handler(flags: IrqFlags) {
if flags.vblank() {
vblank_handler();
}
if flags.hblank() {
hblank_handler();
}
if flags.vcounter() {
vcounter_handler();
}
if flags.timer0() {
timer0_handler();
}
if flags.timer1() {
timer1_handler();
}
}
fn vblank_handler() {
write_pixel(BLUE);
// When using `interrupt_wait()` or `vblank_interrupt_wait()`, IRQ handlers must acknowledge
// the IRQ on the BIOS Interrupt Flags register.
BIOS_IF.write(BIOS_IF.read().with_vblank(true));
}
fn hblank_handler() {
write_pixel(GREEN);
BIOS_IF.write(BIOS_IF.read().with_hblank(true));
}
fn vcounter_handler() {
write_pixel(RED);
BIOS_IF.write(BIOS_IF.read().with_vcounter(true));
}
fn timer0_handler() {
write_pixel(YELLOW);
BIOS_IF.write(BIOS_IF.read().with_timer0(true));
}
fn timer1_handler() {
write_pixel(PINK);
BIOS_IF.write(BIOS_IF.read().with_timer1(true));
}