#![feature(start)] #![feature(asm)] #![no_std] use core::mem::size_of; #[panic_handler] fn panic(_info: &core::panic::PanicInfo) -> ! { loop {} } #[start] fn main(_argc: isize, _argv: *const *const u8) -> isize { unsafe { DISPCNT.write(MODE3 | BG2); } let mut px = SCREEN_WIDTH / 2; let mut py = SCREEN_HEIGHT / 2; let mut color = rgb16(31, 0, 0); loop { // read the input for this frame let this_frame_keys = key_input(); // adjust game state and wait for vblank px += 2 * this_frame_keys.column_direction() as isize; py += 2 * this_frame_keys.row_direction() as isize; wait_until_vblank(); // draw the new game and wait until the next frame starts. unsafe { if px < 0 || py < 0 || px == SCREEN_WIDTH || py == SCREEN_HEIGHT { // out of bounds, reset the screen and position. mode3_clear_screen(0); color = color.rotate_left(5); px = SCREEN_WIDTH / 2; py = SCREEN_HEIGHT / 2; } else { let color_here = mode3_read_pixel(px, py); if color_here != 0 { // crashed into our own line, reset the screen mode3_clear_screen(0); color = color.rotate_left(5); } else { // draw the new part of the line mode3_draw_pixel(px, py, color); mode3_draw_pixel(px, py + 1, color); mode3_draw_pixel(px + 1, py, color); mode3_draw_pixel(px + 1, py + 1, color); } } } wait_until_vdraw(); } } #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)] #[repr(transparent)] pub struct VolatilePtr(pub *mut T); impl VolatilePtr { pub unsafe fn read(&self) -> T { core::ptr::read_volatile(self.0) } pub unsafe fn write(&self, data: T) { core::ptr::write_volatile(self.0, data); } pub unsafe fn offset(self, count: isize) -> Self { VolatilePtr(self.0.wrapping_offset(count)) } } pub const DISPCNT: VolatilePtr = VolatilePtr(0x04000000 as *mut u16); pub const MODE3: u16 = 3; pub const BG2: u16 = 0b100_0000_0000; pub const VRAM: usize = 0x600_0000; pub const SCREEN_WIDTH: isize = 240; pub const SCREEN_HEIGHT: isize = 160; pub const fn rgb16(red: u16, green: u16, blue: u16) -> u16 { blue << 10 | green << 5 | red } pub unsafe fn mode3_clear_screen(color: u16) { let color = color as u32; let bulk_color = color << 16 | color; let mut ptr = VolatilePtr(VRAM as *mut u32); for _ in 0..SCREEN_HEIGHT { for _ in 0..(SCREEN_WIDTH / 2) { ptr.write(bulk_color); ptr = ptr.offset(1); } } } pub unsafe fn mode3_draw_pixel(col: isize, row: isize, color: u16) { VolatilePtr(VRAM as *mut u16).offset(col + row * SCREEN_WIDTH).write(color); } pub unsafe fn mode3_read_pixel(col: isize, row: isize) -> u16 { VolatilePtr(VRAM as *mut u16).offset(col + row * SCREEN_WIDTH).read() } pub const KEYINPUT: VolatilePtr = VolatilePtr(0x400_0130 as *mut u16); /// A newtype over the key input state of the GBA. #[derive(Debug, Clone, Copy, Default, PartialEq, Eq)] #[repr(transparent)] pub struct KeyInputSetting(u16); /// A "tribool" value helps us interpret the arrow pad. #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[repr(i32)] pub enum TriBool { Minus = -1, Neutral = 0, Plus = 1, } pub fn key_input() -> KeyInputSetting { unsafe { KeyInputSetting(KEYINPUT.read() ^ 0b0000_0011_1111_1111) } } pub const KEY_A: u16 = 1 << 0; pub const KEY_B: u16 = 1 << 1; pub const KEY_SELECT: u16 = 1 << 2; pub const KEY_START: u16 = 1 << 3; pub const KEY_RIGHT: u16 = 1 << 4; pub const KEY_LEFT: u16 = 1 << 5; pub const KEY_UP: u16 = 1 << 6; pub const KEY_DOWN: u16 = 1 << 7; pub const KEY_R: u16 = 1 << 8; pub const KEY_L: u16 = 1 << 9; impl KeyInputSetting { pub fn contains(&self, key: u16) -> bool { (self.0 & key) != 0 } pub fn difference(&self, other: KeyInputSetting) -> KeyInputSetting { KeyInputSetting(self.0 ^ other.0) } pub fn column_direction(&self) -> TriBool { if self.contains(KEY_RIGHT) { TriBool::Plus } else if self.contains(KEY_LEFT) { TriBool::Minus } else { TriBool::Neutral } } pub fn row_direction(&self) -> TriBool { if self.contains(KEY_DOWN) { TriBool::Plus } else if self.contains(KEY_UP) { TriBool::Minus } else { TriBool::Neutral } } } pub const VCOUNT: VolatilePtr = VolatilePtr(0x0400_0006 as *mut u16); pub fn vcount() -> u16 { unsafe { VCOUNT.read() } } pub fn wait_until_vblank() { while vcount() < SCREEN_HEIGHT as u16 {} } pub fn wait_until_vdraw() { while vcount() >= SCREEN_HEIGHT as u16 {} } #[derive(Debug, Clone, Copy, Default, PartialEq, Eq)] #[repr(transparent)] pub struct Tile4bpp { data: [u32; 8], } #[derive(Debug, Clone, Copy, Default, PartialEq, Eq)] #[repr(transparent)] pub struct Tile8bpp { data: [u32; 16], } #[derive(Clone, Copy)] #[repr(transparent)] pub struct Charblock4bpp { data: [Tile4bpp; 512], } #[derive(Clone, Copy)] #[repr(transparent)] pub struct Charblock8bpp { data: [Tile8bpp; 256], } pub const PALRAM_BG_BASE: VolatilePtr = VolatilePtr(0x500_0000 as *mut u16); pub fn bg_palette(slot: usize) -> u16 { assert!(slot < 256); unsafe { PALRAM_BG_BASE.offset(slot as isize).read() } } pub fn set_bg_palette(slot: usize, color: u16) { assert!(slot < 256); unsafe { PALRAM_BG_BASE.offset(slot as isize).write(color) } } pub fn bg_tile_4pp(base_block: usize, tile_index: usize) -> Tile4bpp { assert!(base_block < 4); assert!(tile_index < 512); let address = VRAM + size_of::() * base_block + size_of::() * tile_index; unsafe { VolatilePtr(address as *mut Tile4bpp).read() } } pub fn set_bg_tile_4pp(base_block: usize, tile_index: usize, tile: Tile4bpp) { assert!(base_block < 4); assert!(tile_index < 512); let address = VRAM + size_of::() * base_block + size_of::() * tile_index; unsafe { VolatilePtr(address as *mut Tile4bpp).write(tile) } } pub fn bg_tile_8pp(base_block: usize, tile_index: usize) -> Tile8bpp { assert!(base_block < 4); assert!(tile_index < 256); let address = VRAM + size_of::() * base_block + size_of::() * tile_index; unsafe { VolatilePtr(address as *mut Tile8bpp).read() } } pub fn set_bg_tile_8pp(base_block: usize, tile_index: usize, tile: Tile8bpp) { assert!(base_block < 4); assert!(tile_index < 256); let address = VRAM + size_of::() * base_block + size_of::() * tile_index; unsafe { VolatilePtr(address as *mut Tile8bpp).write(tile) } } #[derive(Clone, Copy)] #[repr(transparent)] pub struct RegularScreenblock { data: [RegularScreenblockEntry; 32 * 32], } #[derive(Debug, Clone, Copy, Default, PartialEq, Eq)] #[repr(transparent)] pub struct RegularScreenblockEntry(u16); impl RegularScreenblockEntry { pub fn tile_id(self) -> u16 { self.0 & 0b11_1111_1111 } pub fn set_tile_id(&mut self, id: u16) { self.0 &= !0b11_1111_1111; self.0 |= id; } pub fn horizontal_flip(self) -> bool { (self.0 & (1 << 0xA)) > 0 } pub fn set_horizontal_flip(&mut self, bit: bool) { if bit { self.0 |= 1 << 0xA; } else { self.0 &= !(1 << 0xA); } } pub fn vertical_flip(self) -> bool { (self.0 & (1 << 0xB)) > 0 } pub fn set_vertical_flip(&mut self, bit: bool) { if bit { self.0 |= 1 << 0xB; } else { self.0 &= !(1 << 0xB); } } pub fn palbank_index(self) -> u16 { self.0 >> 12 } pub fn set_palbank_index(&mut self, palbank_index: u16) { self.0 &= 0b1111_1111_1111; self.0 |= palbank_index; } } pub const PALRAM_OBJECT_BASE: VolatilePtr = VolatilePtr(0x500_0200 as *mut u16); pub fn object_palette(slot: usize) -> u16 { assert!(slot < 256); unsafe { PALRAM_OBJECT_BASE.offset(slot as isize).read() } } pub fn set_object_palette(slot: usize, color: u16) { assert!(slot < 256); unsafe { PALRAM_OBJECT_BASE.offset(slot as isize).write(color) } } pub const OAM: usize = 0x700_0000; pub fn object_attributes(slot: usize) -> ObjectAttributes { assert!(slot < 128); let ptr = VolatilePtr((OAM + slot * (size_of::() * 4)) as *mut u16); unsafe { ObjectAttributes { attr0: ptr.read(), attr1: ptr.offset(1).read(), attr2: ptr.offset(2).read(), } } } pub fn set_object_attributes(slot: usize, obj: ObjectAttributes) { assert!(slot < 128); let ptr = VolatilePtr((OAM + slot * (size_of::() * 4)) as *mut u16); unsafe { ptr.write(obj.attr0); ptr.offset(1).write(obj.attr1); ptr.offset(2).write(obj.attr2); } } #[derive(Debug, Clone, Copy, Default, PartialEq, Eq)] pub struct ObjectAttributes { attr0: u16, attr1: u16, attr2: u16, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ObjectRenderMode { Normal, Affine, Disabled, DoubleAreaAffine, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ObjectMode { Normal, AlphaBlending, ObjectWindow, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ObjectShape { Square, Horizontal, Vertical, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ObjectOrientation { Normal, HFlip, VFlip, BothFlip, Affine(u8), } impl ObjectAttributes { pub fn row(&self) -> u16 { self.attr0 & 0b1111_1111 } pub fn column(&self) -> u16 { self.attr1 & 0b1_1111_1111 } pub fn rendering(&self) -> ObjectRenderMode { match (self.attr0 >> 8) & 0b11 { 0 => ObjectRenderMode::Normal, 1 => ObjectRenderMode::Affine, 2 => ObjectRenderMode::Disabled, 3 => ObjectRenderMode::DoubleAreaAffine, _ => unimplemented!(), } } pub fn mode(&self) -> ObjectMode { match (self.attr0 >> 0xA) & 0b11 { 0 => ObjectMode::Normal, 1 => ObjectMode::AlphaBlending, 2 => ObjectMode::ObjectWindow, _ => unimplemented!(), } } pub fn mosaic(&self) -> bool { ((self.attr0 << 3) as i16) < 0 } pub fn two_fifty_six_colors(&self) -> bool { ((self.attr0 << 2) as i16) < 0 } pub fn shape(&self) -> ObjectShape { match (self.attr0 >> 0xE) & 0b11 { 0 => ObjectShape::Square, 1 => ObjectShape::Horizontal, 2 => ObjectShape::Vertical, _ => unimplemented!(), } } pub fn orientation(&self) -> ObjectOrientation { if (self.attr0 >> 8) & 1 > 0 { ObjectOrientation::Affine((self.attr1 >> 9) as u8 & 0b1_1111) } else { match (self.attr1 >> 0xC) & 0b11 { 0 => ObjectOrientation::Normal, 1 => ObjectOrientation::HFlip, 2 => ObjectOrientation::VFlip, 3 => ObjectOrientation::BothFlip, _ => unimplemented!(), } } } pub fn size(&self) -> u16 { self.attr1 >> 0xE } pub fn tile_index(&self) -> u16 { self.attr2 & 0b11_1111_1111 } pub fn priority(&self) -> u16 { self.attr2 >> 0xA } pub fn palbank(&self) -> u16 { self.attr2 >> 0xC } // pub fn set_row(&mut self, row: u16) { self.attr0 &= !0b1111_1111; self.attr0 |= row & 0b1111_1111; } pub fn set_column(&mut self, col: u16) { self.attr1 &= !0b1_1111_1111; self.attr2 |= col & 0b1_1111_1111; } pub fn set_rendering(&mut self, rendering: ObjectRenderMode) { const RENDERING_MASK: u16 = 0b11 << 8; self.attr0 &= !RENDERING_MASK; self.attr0 |= (rendering as u16) << 8; } pub fn set_mode(&mut self, mode: ObjectMode) { const MODE_MASK: u16 = 0b11 << 0xA; self.attr0 &= MODE_MASK; self.attr0 |= (mode as u16) << 0xA; } pub fn set_mosaic(&mut self, bit: bool) { const MOSAIC_BIT: u16 = 1 << 0xC; if bit { self.attr0 |= MOSAIC_BIT } else { self.attr0 &= !MOSAIC_BIT } } pub fn set_two_fifty_six_colors(&mut self, bit: bool) { const COLOR_MODE_BIT: u16 = 1 << 0xD; if bit { self.attr0 |= COLOR_MODE_BIT } else { self.attr0 &= !COLOR_MODE_BIT } } pub fn set_shape(&mut self, shape: ObjectShape) { self.attr0 &= 0b0011_1111_1111_1111; self.attr0 |= (shape as u16) << 0xE; } pub fn set_orientation(&mut self, orientation: ObjectOrientation) { const AFFINE_INDEX_MASK: u16 = 0b1_1111 << 9; self.attr1 &= !AFFINE_INDEX_MASK; let bits = match orientation { ObjectOrientation::Affine(index) => (index as u16) << 9, ObjectOrientation::Normal => 0, ObjectOrientation::HFlip => 1 << 0xC, ObjectOrientation::VFlip => 1 << 0xD, ObjectOrientation::BothFlip => 0b11 << 0xC, }; self.attr1 |= bits; } pub fn set_size(&mut self, size: u16) { self.attr1 &= 0b0011_1111_1111_1111; self.attr1 |= size << 14; } pub fn set_tile_index(&mut self, index: u16) { self.attr2 &= !0b11_1111_1111; self.attr2 |= 0b11_1111_1111 & index; } pub fn set_priority(&mut self, priority: u16) { self.attr2 &= !0b0000_1100_0000_0000; self.attr2 |= (priority & 0b11) << 0xA; } pub fn set_palbank(&mut self, palbank: u16) { self.attr2 &= !0b1111_0000_0000_0000; self.attr2 |= (palbank & 0b1111) << 0xC; } } pub fn div_modulus(numerator: i32, denominator: i32) -> (i32, i32) { assert!(denominator != 0); { let div_out: i32; let mod_out: i32; unsafe { asm!(/* assembly template */ "swi 0x06" :/* output operands */ "={r0}"(div_out), "={r1}"(mod_out) :/* input operands */ "{r0}"(numerator), "{r1}"(denominator) :/* clobbers */ "r3" :/* options */ ); } (div_out, mod_out) } } pub fn div(numerator: i32, denominator: i32) -> i32 { div_modulus(numerator, denominator).0 } pub fn modulus(numerator: i32, denominator: i32) -> i32 { div_modulus(numerator, denominator).1 } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct RandRangeU16 { range: u16, threshold: u16, } impl RandRangeU16 { pub fn new(mut range: u16) -> Self { let mut threshold = range.wrapping_neg(); if threshold >= range { threshold -= range; if threshold >= range { threshold = modulus(threshold as i32, range as i32) as u16; } } RandRangeU16 { range, threshold } } pub fn roll_random(&self, rng: &mut impl FnMut() -> u16) -> u16 { let mut x: u16 = rng(); let mut m: u32 = x as u32 * self.range as u32; let mut l: u16 = m as u16; if l < self.range { while l < self.threshold { x = rng(); m = x as u32 * self.range as u32; l = m as u16; } } (m >> 16) as u16 } } pub fn bounded_rand32(rng: &mut impl FnMut() -> u32, mut range: u32) -> u32 { let mut mask: u32 = !0; range -= 1; mask >>= (range | 1).leading_zeros(); let mut x = rng() & mask; while x > range { x = rng() & mask; } x } pub const TM0D: VolatilePtr = VolatilePtr(0x400_0100 as *mut u16); pub const TM0CNT: VolatilePtr = VolatilePtr(0x400_0102 as *mut u16); pub const TM1D: VolatilePtr = VolatilePtr(0x400_0104 as *mut u16); pub const TM1CNT: VolatilePtr = VolatilePtr(0x400_0106 as *mut u16); pub const TM2D: VolatilePtr = VolatilePtr(0x400_0108 as *mut u16); pub const TM2CNT: VolatilePtr = VolatilePtr(0x400_010A as *mut u16); pub const TM3D: VolatilePtr = VolatilePtr(0x400_010C as *mut u16); pub const TM3CNT: VolatilePtr = VolatilePtr(0x400_010E as *mut u16);