1
0
Fork 0
nih-plug/plugins/spectral_compressor/src/compressor_bank.rs

425 lines
18 KiB
Rust
Raw Normal View History

// Spectral Compressor: an FFT based compressor
// Copyright (C) 2021-2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use nih_plug::prelude::*;
/// A bank of compressors so each FFT bin can be compressed individually. The vectors in this struct
/// will have a capacity of `MAX_WINDOW_SIZE / 2 + 1` and a size that matches the current complex
/// FFT buffer size. This is stored as a struct of arrays to make SIMD-ing easier in the future.
pub struct CompressorBank {
/// If set, then the downwards thresholds should be updated on the next processing cycle. Can be
/// set from a parameter value change listener, and is also set when calling `.reset_for_size`.
pub should_update_downwards_thresholds: Arc<AtomicBool>,
/// The same as `should_update_downwards_thresholds`, but for upwards thresholds.
pub should_update_upwards_thresholds: Arc<AtomicBool>,
/// If set, then the downwards ratios should be updated on the next processing cycle. Can be set
/// from a parameter value change listener, and is also set when calling `.reset_for_size`.
pub should_update_downwards_ratios: Arc<AtomicBool>,
/// The same as `should_update_downwards_ratios`, but for upwards ratios.
pub should_update_upwards_ratios: Arc<AtomicBool>,
/// For each compressor bin, `log2(freq)` where `freq` is the frequency associated with that
/// compressor. This is precomputed since all update functions need it.
log2_freqs: Vec<f32>,
/// Downwards compressor thresholds, in linear space.
downwards_thresholds: Vec<f32>,
/// Upwards compressor thresholds, in linear space.
upwards_thresholds: Vec<f32>,
/// Downwards compressor ratios. At 1.0 the cmopressor won't do anything. If
/// [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the same
/// for each compressor.
downwards_ratios: Vec<f32>,
/// Upwards compressor ratios. At 1.0 the cmopressor won't do anything. If
/// [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the same
/// for each compressor.
upwards_ratios: Vec<f32>,
/// The current envelope value for this bin, in linear space. Indexed by
/// `[channel_idx][compressor_idx]`.
envelopes: Vec<Vec<f32>>,
// TODO: Parameters for the envelope followers so we can actuall ydo soemthing useful.
}
#[derive(Params)]
pub struct ThresholdParams {
// TODO: Sidechaining
/// The center frqeuency for the target curve when sidechaining is not enabled. The curve is a
/// polynomial `threshold_db + curve_slope*x + curve_curve*(x^2)` that evaluates to a decibel
/// value, where `x = log2(center_frequency) - log2(bin_frequency)`. In other words, this is
/// evaluated in the log/log domain for decibels and octaves.
#[id = "thresh_center_freq"]
center_frequency: FloatParam,
/// The compressor threshold at the center frequency. When sidechaining is enabled, the input
/// signal is gained by the inverse of this value. This replaces the input gain in the original
/// Spectral Compressor. In the polynomial above, this is the intercept.
#[id = "input_db"]
threshold_db: FloatParam,
/// The slope for the curve, in the log/log domain. See the polynomial above.
#[id = "thresh_curve_slope"]
curve_slope: FloatParam,
/// The, uh, 'curve' for the curve, in the logarithmic domain. This is the third coefficient in
/// the quadratic polynomial and controls the parabolic behavior. Positive values turn the curve
/// into a v-shaped curve, while negative values attenuate everything outside of the center
/// frequency. See the polynomial above.
#[id = "thresh_curve_curve"]
curve_curve: FloatParam,
}
#[derive(Params)]
pub struct CompressorBankParams {
2022-07-22 21:45:09 +10:00
// TODO: Target curve options
/// The downwards compression threshold relative to the target curve.
#[id = "thresh_down_off"]
downwards_threshold_offset_db: FloatParam,
/// The upwards compression threshold relative to the target curve.
2022-07-22 21:45:09 +10:00
#[id = "thresh_up_off"]
upwards_threshold_offset_db: FloatParam,
2022-07-22 21:45:09 +10:00
/// A `[0, 1]` scaling factor that causes the compressors for the higher registers to have lower
/// ratios than the compressors for the lower registers. The scaling is applied logarithmically
/// rather than linearly over the compressors.
///
/// TODO: Decide on whether or not this should only apply on upwards ratios, or if we may need
/// separate controls for both
#[id = "ratio_hi_freq_rolloff"]
high_freq_ratio_rolloff: FloatParam,
/// The downwards compression ratio. At 1.0 the downwards compressor is disengaged.
#[id = "ratio_down"]
downwards_ratio: FloatParam,
/// The upwards compression ratio. At 1.0 the upwards compressor is disengaged.
#[id = "ratio_up"]
upwards_ratio: FloatParam,
2022-07-22 21:45:09 +10:00
/// The downwards compression knee width, in decibels.
#[id = "knee_down_off"]
downwards_knee_width_db: FloatParam,
/// The upwards compression knee width, in decibels.
#[id = "knee_up_off"]
upwards_knee_width_db: FloatParam,
/// The compressor's attack time in milliseconds. Controls both upwards and downwards
/// compression.
#[id = "attack"]
compressor_attack_ms: FloatParam,
/// The compressor's release time in milliseconds. Controls both upwards and downwards
/// compression.
#[id = "release"]
compressor_release_ms: FloatParam,
}
impl ThresholdParams {
/// Create a new [`ThresholdParams`] object. Changing any of the threshold parameters causes the
/// passed compressor bank's thresholds to be updated.
pub fn new(compressor_bank: &CompressorBank) -> Self {
let should_update_downwards_thresholds =
compressor_bank.should_update_downwards_thresholds.clone();
let should_update_upwards_thresholds =
compressor_bank.should_update_upwards_thresholds.clone();
let set_update_both_thresholds = Arc::new(move |_| {
should_update_downwards_thresholds.store(true, Ordering::SeqCst);
should_update_upwards_thresholds.store(true, Ordering::SeqCst);
});
ThresholdParams {
center_frequency: FloatParam::new(
"Threshold Center",
500.0,
FloatRange::Skewed {
min: 20.0,
max: 20_000.0,
factor: FloatRange::skew_factor(-2.0),
},
)
.with_callback(set_update_both_thresholds.clone())
// This includes the unit
.with_value_to_string(formatters::v2s_f32_hz_then_khz(0))
.with_string_to_value(formatters::s2v_f32_hz_then_khz()),
// These are polynomial coefficients that are evaluated in the log/log domain
// (octaves/decibels). The threshold is the intercept.
threshold_db: FloatParam::new(
"Global Threshold",
0.0,
FloatRange::Linear {
min: -50.0,
max: 50.0,
},
)
.with_callback(set_update_both_thresholds.clone())
.with_unit(" dB")
.with_step_size(0.1),
curve_slope: FloatParam::new(
"Threshold Slope",
0.0,
FloatRange::Linear {
min: -24.0,
max: 24.0,
},
)
.with_callback(set_update_both_thresholds.clone())
.with_unit(" dB/oct")
.with_step_size(0.1),
curve_curve: FloatParam::new(
"Threshold Curve",
0.0,
FloatRange::Linear {
min: -24.0,
max: 24.0,
},
)
.with_callback(set_update_both_thresholds)
.with_unit(" dB/oct²")
.with_step_size(0.1),
}
}
}
impl CompressorBankParams {
/// Create a new [`CompressorBankParams`] object. Changing any of the threshold or ratio
/// parameters causes the passed compressor bank's parameters to be updated.
pub fn new(compressor_bank: &CompressorBank) -> Self {
let should_update_downwards_thresholds =
compressor_bank.should_update_downwards_thresholds.clone();
let set_update_downwards_thresholds =
Arc::new(move |_| should_update_downwards_thresholds.store(true, Ordering::SeqCst));
let should_update_upwards_thresholds =
compressor_bank.should_update_upwards_thresholds.clone();
let set_update_upwards_thresholds =
Arc::new(move |_| should_update_upwards_thresholds.store(true, Ordering::SeqCst));
let should_update_downwards_ratios = compressor_bank.should_update_downwards_ratios.clone();
let set_update_downwards_ratios =
Arc::new(move |_| should_update_downwards_ratios.store(true, Ordering::SeqCst));
let should_update_upwards_ratios = compressor_bank.should_update_upwards_ratios.clone();
let set_update_upwards_ratios =
Arc::new(move |_| should_update_upwards_ratios.store(true, Ordering::SeqCst));
let should_update_downwards_ratios = compressor_bank.should_update_downwards_ratios.clone();
let should_update_upwards_ratios = compressor_bank.should_update_upwards_ratios.clone();
let set_update_both_ratios = Arc::new(move |_| {
should_update_downwards_ratios.store(true, Ordering::SeqCst);
should_update_upwards_ratios.store(true, Ordering::SeqCst);
});
CompressorBankParams {
// TODO: Set nicer default values for these things
// As explained above, these offsets are relative to the target curve
downwards_threshold_offset_db: FloatParam::new(
"Downwards Offset",
0.0,
FloatRange::Linear {
min: -50.0,
max: 50.0,
},
)
.with_callback(set_update_downwards_thresholds)
.with_unit(" dB")
.with_step_size(0.1),
upwards_threshold_offset_db: FloatParam::new(
"Upwards Offset",
0.0,
FloatRange::Linear {
min: -50.0,
max: 50.0,
},
)
.with_callback(set_update_upwards_thresholds)
.with_unit(" dB")
.with_step_size(0.1),
2022-07-22 21:45:09 +10:00
high_freq_ratio_rolloff: FloatParam::new(
"High-freq Ratio Rolloff",
0.5,
FloatRange::Linear { min: 0.0, max: 1.0 },
)
.with_callback(set_update_both_ratios)
.with_unit("%")
.with_value_to_string(formatters::v2s_f32_percentage(0))
.with_string_to_value(formatters::s2v_f32_percentage()),
downwards_ratio: FloatParam::new(
"Downwards Ratio",
1.0,
FloatRange::Skewed {
min: 1.0,
max: 300.0,
factor: FloatRange::skew_factor(-2.0),
},
)
.with_callback(set_update_downwards_ratios)
.with_step_size(0.1)
.with_value_to_string(formatters::v2s_compression_ratio(1))
.with_string_to_value(formatters::s2v_compression_ratio()),
upwards_ratio: FloatParam::new(
"Upwards Ratio",
1.0,
FloatRange::Skewed {
min: 1.0,
max: 300.0,
factor: FloatRange::skew_factor(-2.0),
},
)
.with_callback(set_update_upwards_ratios)
.with_step_size(0.1)
.with_value_to_string(formatters::v2s_compression_ratio(1))
.with_string_to_value(formatters::s2v_compression_ratio()),
2022-07-22 21:45:09 +10:00
downwards_knee_width_db: FloatParam::new(
"Downwards Knee",
0.0,
FloatRange::Skewed {
min: 0.0,
max: 36.0,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_unit(" dB")
.with_step_size(0.1),
upwards_knee_width_db: FloatParam::new(
"Upwards Knee",
0.0,
FloatRange::Skewed {
min: 0.0,
max: 36.0,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_unit(" dB")
.with_step_size(0.1),
compressor_attack_ms: FloatParam::new(
"Attack",
150.0,
FloatRange::Skewed {
// TODO: Make sure to handle 0 attack and release times in the compressor
min: 0.0,
max: 10_000.0,
factor: FloatRange::skew_factor(-2.0),
},
)
.with_unit(" ms")
.with_step_size(0.1),
compressor_release_ms: FloatParam::new(
"Release",
300.0,
FloatRange::Skewed {
min: 0.0,
max: 10_000.0,
factor: FloatRange::skew_factor(-2.0),
},
)
.with_unit(" ms")
.with_step_size(0.1),
}
}
}
impl CompressorBank {
/// Set up the compressor for the given channel count and maximum FFT window size. The
/// compressors won't be initialized yet.
pub fn new(num_channels: usize, max_window_size: usize) -> Self {
let complex_buffer_len = max_window_size / 2 + 1;
CompressorBank {
should_update_downwards_thresholds: Arc::new(AtomicBool::new(true)),
should_update_upwards_thresholds: Arc::new(AtomicBool::new(true)),
should_update_downwards_ratios: Arc::new(AtomicBool::new(true)),
should_update_upwards_ratios: Arc::new(AtomicBool::new(true)),
log2_freqs: Vec::with_capacity(complex_buffer_len),
downwards_thresholds: Vec::with_capacity(complex_buffer_len),
upwards_thresholds: Vec::with_capacity(complex_buffer_len),
downwards_ratios: Vec::with_capacity(complex_buffer_len),
upwards_ratios: Vec::with_capacity(complex_buffer_len),
envelopes: vec![Vec::with_capacity(complex_buffer_len); num_channels],
}
}
/// Change the capacities of the internal buffers to fit new parameters. Use the
/// `.reset_for_size()` method to clear the buffers and set the current window size.
pub fn update_capacity(&mut self, num_channels: usize, max_window_size: usize) {
let complex_buffer_len = max_window_size / 2 + 1;
self.log2_freqs
.reserve_exact(complex_buffer_len.saturating_sub(self.log2_freqs.len()));
self.downwards_thresholds
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_thresholds.len()));
self.upwards_thresholds
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_thresholds.len()));
self.downwards_ratios
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_ratios.len()));
self.upwards_ratios
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_ratios.len()));
self.envelopes.resize_with(num_channels, Vec::new);
for envelopes in self.envelopes.iter_mut() {
envelopes.reserve_exact(complex_buffer_len.saturating_sub(envelopes.len()));
}
}
/// Resize the number of compressors to match the current window size. Also precomputes the
/// 2-log frequencies for each bin.
///
/// If the window size is larger than the maximum window size, then this will allocate.
pub fn resize(&mut self, buffer_config: &BufferConfig, window_size: usize) {
let complex_buffer_len = window_size / 2 + 1;
// These 2-log frequencies are needed when updating the compressor parameters, so we'll just
// precompute them to avoid having to repeat the same expensive computations all the time
self.log2_freqs.resize(complex_buffer_len, 0.0);
for (i, log2_freq) in self.log2_freqs.iter_mut().enumerate() {
let freq = (i as f32 / window_size as f32) * buffer_config.sample_rate;
*log2_freq = freq.log2();
}
self.downwards_thresholds.resize(complex_buffer_len, 1.0);
self.upwards_thresholds.resize(complex_buffer_len, 1.0);
self.downwards_ratios.resize(complex_buffer_len, 1.0);
self.upwards_ratios.resize(complex_buffer_len, 1.0);
for envelopes in self.envelopes.iter_mut() {
envelopes.resize(complex_buffer_len, 0.0);
}
// The compressors need to be updated on the next processing cycle
self.should_update_downwards_thresholds
.store(true, Ordering::SeqCst);
self.should_update_upwards_thresholds
.store(true, Ordering::SeqCst);
self.should_update_downwards_ratios
.store(true, Ordering::SeqCst);
self.should_update_upwards_ratios
.store(true, Ordering::SeqCst);
}
/// Clear out the envelope followers.
pub fn reset(&mut self) {
for envelopes in self.envelopes.iter_mut() {
envelopes.fill(0.0);
}
}
/// Update the compressors if needed. This is called just before processing, and the compressors
/// are updated in accordance to the atomic flags set on this struct.
fn update_if_needed(&mut self) {
//
}
}