1
0
Fork 0

Use the new buffer management for the CPAL backend

Now everything uses `BufferManager`. That should hopefully reduce the
chances that different backends behave differently or trigger different
debug assertions.
This commit is contained in:
Robbert van der Helm 2023-04-01 15:43:58 +02:00
parent cc5980e215
commit 112c801bc4

View file

@ -11,6 +11,7 @@ use parking_lot::Mutex;
use rtrb::RingBuffer;
use std::borrow::Borrow;
use std::num::NonZeroU32;
use std::ptr::NonNull;
use std::thread::ScopedJoinHandle;
use super::super::config::WrapperConfig;
@ -21,6 +22,7 @@ use crate::context::process::Transport;
use crate::midi::{MidiConfig, MidiResult, PluginNoteEvent};
use crate::plugin::Plugin;
use crate::prelude::NoteEvent;
use crate::wrapper::util::buffer_management::{BufferManager, ChannelPointers};
const MIDI_EVENT_QUEUE_CAPACITY: usize = 2048;
@ -67,6 +69,21 @@ struct ActiveMidirOutputDevice {
pub port: MidiOutputPort,
}
/// Send+Sync wrapper for `Vec<*mut f32>` so we can preallocate channel pointer vectors for use with
/// the `BufferManager` API.
struct ChannelPointerVec(Vec<*mut f32>);
unsafe impl Send for ChannelPointerVec {}
unsafe impl Sync for ChannelPointerVec {}
impl ChannelPointerVec {
// If you directly access the `.0` field then it will try to move it out of the struct which
// undoes the Send+Sync impl.
pub fn get(&mut self) -> &mut Vec<*mut f32> {
&mut self.0
}
}
/// A task for the MIDI output thread.
enum MidiOutputTask<P: Plugin> {
/// Send an event as MIDI data.
@ -675,61 +692,61 @@ impl CpalMidir {
{
// We'll receive interlaced input samples from CPAL. These need to converted to deinterlaced
// channels, processed, and then copied those back to an interlaced buffer for the output.
// This needs to be wrapped in a struct like this and boxed because the `channels` vectors
// need to live just as long as `buffer` when they get moved into the closure.
// FIXME: This is pretty nasty, come up with a cleaner alternative
let buffer_size = self.config.period_size as usize;
let num_output_channels = self
.audio_io_layout
.main_output_channels
.map(NonZeroU32::get)
.unwrap_or_default() as usize;
let mut channels =
vec![vec![0.0f32; self.config.period_size as usize]; num_output_channels];
let mut buffer = Buffer::default();
unsafe {
buffer.set_slices(0, |output_slices| {
// Pre-allocate enough storage, the pointers are set in the data callback because
// `channels` will have been moved between now and the next callback
output_slices.resize_with(channels.len(), || &mut []);
})
}
.unwrap_or(0) as usize;
let num_input_channels = self
.audio_io_layout
.main_input_channels
.map(NonZeroU32::get)
.unwrap_or(0) as usize;
let mut main_io_storage = vec![vec![0.0f32; buffer_size]; num_output_channels];
// We'll do the same thing for auxiliary inputs and outputs, so the plugin always gets the
// buffers it expects
// This backend does not support auxiliary inputs and outputs, so in order to have the same
// behavior as the other backends we'll provide some dummy buffers that we'll zero out every
// time
let mut aux_input_storage: Vec<Vec<Vec<f32>>> = Vec::new();
let mut aux_input_buffers: Vec<Buffer> = Vec::new();
for channel_count in self.audio_io_layout.aux_input_ports {
aux_input_storage.push(vec![
vec![0.0f32; self.config.period_size as usize];
vec![0.0f32; buffer_size];
channel_count.get() as usize
]);
// We'll preallocate the slices, but we'll only assign them to point to
// `aux_input_storage` at the start of the audio callback
let mut aux_buffer = Buffer::default();
unsafe {
aux_buffer.set_slices(self.config.period_size as usize, |output_slices| {
output_slices.resize_with(channel_count.get() as usize, || &mut []);
})
}
aux_input_buffers.push(aux_buffer);
}
let mut aux_output_storage: Vec<Vec<Vec<f32>>> = Vec::new();
let mut aux_output_buffers: Vec<Buffer> = Vec::new();
for channel_count in self.audio_io_layout.aux_output_ports {
aux_output_storage.push(vec![
vec![0.0f32; self.config.period_size as usize];
vec![0.0f32; buffer_size];
channel_count.get() as usize
]);
let mut aux_buffer = Buffer::default();
unsafe {
aux_buffer.set_slices(self.config.period_size as usize, |output_slices| {
output_slices.resize_with(channel_count.get() as usize, || &mut []);
})
}
aux_output_buffers.push(aux_buffer);
// The actual buffer management here works the same as in the JACK backend. See that
// implementation for more information.
let mut buffer_manager =
BufferManager::for_audio_io_layout(buffer_size, self.audio_io_layout);
let mut main_io_channel_pointers = ChannelPointerVec(Vec::with_capacity(
self.audio_io_layout
.main_output_channels
.map(NonZeroU32::get)
.unwrap_or(0) as usize,
));
let mut aux_input_channel_pointers =
Vec::with_capacity(self.audio_io_layout.aux_input_ports.len());
for channel_count in self.audio_io_layout.aux_input_ports {
aux_input_channel_pointers.push(ChannelPointerVec(Vec::with_capacity(
channel_count.get() as usize,
)));
}
let mut aux_output_channel_pointers =
Vec::with_capacity(self.audio_io_layout.aux_output_ports.len());
for channel_count in self.audio_io_layout.aux_output_ports {
aux_output_channel_pointers.push(ChannelPointerVec(Vec::with_capacity(
channel_count.get() as usize,
)));
}
let mut midi_input_events = Vec::with_capacity(MIDI_EVENT_QUEUE_CAPACITY);
@ -737,67 +754,25 @@ impl CpalMidir {
// Can't borrow from `self` in the callback
let config = self.config.clone();
let mut num_processed_samples = 0;
let mut num_processed_samples = 0usize;
move |data, _info| {
// Things may have been moved in between callbacks, so these pointers need to be set up
// again on each invocation
unsafe {
buffer.set_slices(config.period_size as usize, |output_slices| {
for (output_slice, channel) in output_slices.iter_mut().zip(channels.iter_mut())
{
// SAFETY: `channels` is no longer used directly after this, and it outlives
// the data closure
*output_slice = &mut *(channel.as_mut_slice() as *mut [f32]);
}
})
}
for (aux_buffer, aux_storage) in aux_input_buffers
.iter_mut()
.zip(aux_input_storage.iter_mut())
{
unsafe {
aux_buffer.set_slices(config.period_size as usize, |output_slices| {
for (output_slice, channel) in
output_slices.iter_mut().zip(aux_storage.iter_mut())
{
// SAFETY: `aux_input_storage` is no longer used directly after this,
// and it outlives the data closure
*output_slice = &mut *(channel.as_mut_slice() as *mut [f32]);
}
})
}
}
for (aux_buffer, aux_storage) in aux_output_buffers
.iter_mut()
.zip(aux_output_storage.iter_mut())
{
unsafe {
aux_buffer.set_slices(config.period_size as usize, |output_slices| {
for (output_slice, channel) in
output_slices.iter_mut().zip(aux_storage.iter_mut())
{
// SAFETY: `aux_output_storage` is no longer used directly after this,
// and it outlives the data closure
*output_slice = &mut *(channel.as_mut_slice() as *mut [f32]);
}
})
}
}
let mut transport = Transport::new(config.sample_rate);
transport.pos_samples = Some(num_processed_samples);
transport.pos_samples = Some(num_processed_samples as i64);
transport.tempo = Some(config.tempo as f64);
transport.time_sig_numerator = Some(config.timesig_num as i32);
transport.time_sig_denominator = Some(config.timesig_denom as i32);
transport.playing = true;
// If an input was configured, then the output buffer is filled with (interleaved) input
// samples. Otherwise it gets filled with silence.
// samples. Otherwise it gets filled with silence. There is no need to zero out any of
// the other buffers. The `BufferManager` will copy the auxiliary input data to its own
// storage buffers because it cannot assume that these buffers are safe to write to.
// Because of that we'll never need to reinitialize these, and the output storage is
// write-only (with `BufferManager` always zeroing them out when creating the buffers).
match &mut input_rb_consumer {
Some(input_rb_consumer) => {
for channels in buffer.iter_samples() {
for sample in channels {
for channel in main_io_storage.iter_mut() {
for sample in channel {
loop {
// Keep spinning on this if the output callback somehow outpaces the
// input callback
@ -810,26 +785,88 @@ impl CpalMidir {
}
}
None => {
for channel in buffer.as_slice() {
for channel in main_io_storage.iter_mut() {
channel.fill(0.0);
}
}
}
// The CPAL backends don't support auxiliary IO, so we'll just zero them out. The
// buffers are still provided to the wrapped plugin since it should not expect the
// wrapper/host to deviate from its audio IO layouts.
for aux_buffer in &mut aux_input_buffers {
for channel in aux_buffer.as_slice() {
channel.fill(0.0);
// Things may have been moved in between callbacks, so these pointers need to be set up
// again on each invocation
main_io_channel_pointers.get().clear();
for channel in main_io_storage.iter_mut() {
assert!(channel.len() == buffer_size);
main_io_channel_pointers.get().push(channel.as_mut_ptr());
}
for (input_channel_pointers, input_storage) in aux_input_channel_pointers
.iter_mut()
.zip(aux_input_storage.iter_mut())
{
input_channel_pointers.get().clear();
for channel in input_storage.iter_mut() {
assert!(channel.len() == buffer_size);
input_channel_pointers.get().push(channel.as_mut_ptr());
}
}
for aux_buffer in &mut aux_output_buffers {
for channel in aux_buffer.as_slice() {
channel.fill(0.0);
for (output_channel_pointers, output_storage) in aux_output_channel_pointers
.iter_mut()
.zip(aux_output_storage.iter_mut())
{
output_channel_pointers.get().clear();
for channel in output_storage.iter_mut() {
assert!(channel.len() == buffer_size);
output_channel_pointers.get().push(channel.as_mut_ptr());
}
}
{
let buffers = unsafe {
buffer_manager.create_buffers(buffer_size, |buffer_sources| {
*buffer_sources.main_output_channel_pointers = Some(ChannelPointers {
ptrs: NonNull::new(main_io_channel_pointers.get().as_mut_ptr())
.unwrap(),
num_channels: main_io_channel_pointers.get().len(),
});
*buffer_sources.main_input_channel_pointers = Some(ChannelPointers {
ptrs: NonNull::new(main_io_channel_pointers.get().as_mut_ptr())
.unwrap(),
num_channels: num_input_channels
.min(main_io_channel_pointers.get().len()),
});
for (input_source_channel_pointers, input_channel_pointers) in
buffer_sources
.aux_input_channel_pointers
.iter_mut()
.zip(aux_input_channel_pointers.iter_mut())
{
*input_source_channel_pointers = Some(ChannelPointers {
ptrs: NonNull::new(input_channel_pointers.get().as_mut_ptr())
.unwrap(),
num_channels: input_channel_pointers.get().len(),
});
}
for (output_source_channel_pointers, output_channel_pointers) in
buffer_sources
.aux_output_channel_pointers
.iter_mut()
.zip(aux_output_channel_pointers.iter_mut())
{
*output_source_channel_pointers = Some(ChannelPointers {
ptrs: NonNull::new(output_channel_pointers.get().as_mut_ptr())
.unwrap(),
num_channels: output_channel_pointers.get().len(),
});
}
})
};
midi_input_events.clear();
if let Some(input_event_rb_consumer) = &mut input_event_rb_consumer {
if let Ok(event) = input_event_rb_consumer.pop() {
@ -837,19 +874,13 @@ impl CpalMidir {
}
}
// SAFETY: Shortening these borrows is safe as even if the plugin overwrites the
// slices (which it cannot do without using unsafe code), then they
// would still be reset on the next iteration
let mut aux = unsafe {
AuxiliaryBuffers {
inputs: &mut *(aux_input_buffers.as_mut_slice() as *mut [Buffer]),
outputs: &mut *(aux_output_buffers.as_mut_slice() as *mut [Buffer]),
}
};
midi_output_events.clear();
let mut aux = AuxiliaryBuffers {
inputs: buffers.aux_inputs,
outputs: buffers.aux_outputs,
};
if !cb(
&mut buffer,
buffers.main_buffer,
&mut aux,
transport,
&midi_input_events,
@ -859,13 +890,14 @@ impl CpalMidir {
unparker.unpark();
return;
}
}
// The buffer's samples need to be written to `data` in an interlaced format
for (output_sample, buffer_sample) in data.iter_mut().zip(
buffer
.iter_samples()
.flat_map(|channels| channels.into_iter()),
) {
// SAFETY: Dropping `buffers` allows us to borrow `main_io_storage` again
for (output_sample, buffer_sample) in data
.iter_mut()
.zip(main_io_storage.iter().flat_map(|channels| channels.iter()))
{
*output_sample = T::from_sample(*buffer_sample);
}
@ -881,7 +913,7 @@ impl CpalMidir {
}
}
num_processed_samples += buffer.samples() as i64;
num_processed_samples += buffer_size;
}
}
}