Smooth the Diopser spectrum analyzer
This commit is contained in:
parent
1bec387216
commit
420c3099f5
2 changed files with 46 additions and 28 deletions
|
@ -331,6 +331,10 @@ impl Plugin for Diopser {
|
|||
self.sample_rate
|
||||
.store(buffer_config.sample_rate, Ordering::Relaxed);
|
||||
|
||||
// The spectrum is smoothed so it decays gradually
|
||||
self.spectrum_input
|
||||
.update_sample_rate(buffer_config.sample_rate);
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
|
|
|
@ -26,6 +26,10 @@ pub const SPECTRUM_WINDOW_SIZE: usize = 2048;
|
|||
// Don't need that much precision here
|
||||
const SPECTRUM_WINDOW_OVERLAP: usize = 2;
|
||||
|
||||
/// The time it takes for the spectrum to go down 12 dB. The upwards step is immediate like in a
|
||||
/// peak meter.
|
||||
const SMOOTHING_DECAY_MS: f32 = 100.0;
|
||||
|
||||
/// The amplitudes of all frequency bins in a windowed FFT of the input. Also includes the DC offset
|
||||
/// bin which we don't draw, just to make this a bit less confusing.
|
||||
pub type Spectrum = [f32; SPECTRUM_WINDOW_SIZE / 2 + 1];
|
||||
|
@ -39,6 +43,11 @@ pub struct SpectrumInput {
|
|||
/// The number of channels we're working on.
|
||||
num_channels: usize,
|
||||
|
||||
/// The spectrum behaves like a peak meter. If the new value is higher than the previous one, it
|
||||
/// jump up immediately. Otherwise the old value is multiplied by this weight and the new value
|
||||
/// by one minus this weight.
|
||||
smoothing_decay_weight: f32,
|
||||
|
||||
/// A way to send data to the corresponding [`SpectrumOutput`]. `spectrum_result_buffer` gets
|
||||
/// copied into this buffer every time a new spectrum is available.
|
||||
triple_buffer_input: triple_buffer::Input<Spectrum>,
|
||||
|
@ -64,6 +73,9 @@ impl SpectrumInput {
|
|||
stft: util::StftHelper::new(num_channels, SPECTRUM_WINDOW_SIZE, 0),
|
||||
num_channels,
|
||||
|
||||
// This is set in `initialize()` based on the sample rate
|
||||
smoothing_decay_weight: 0.0,
|
||||
|
||||
triple_buffer_input,
|
||||
spectrum_result_buffer: [0.0; SPECTRUM_WINDOW_SIZE / 2 + 1],
|
||||
|
||||
|
@ -79,12 +91,25 @@ impl SpectrumInput {
|
|||
(input, triple_buffer_output)
|
||||
}
|
||||
|
||||
/// Update the smoothing using the specified sample rate. Called in `initialize()`.
|
||||
pub fn update_sample_rate(&mut self, sample_rate: f32) {
|
||||
// We'll express the dacay rate in the time it takes for the moving average to drop by 12 dB
|
||||
// NOTE: The effective sample rate accounts for the STFT interval, **and** for the number of
|
||||
// channels. We'll average both channels to mono-ish.
|
||||
let effective_sample_rate = sample_rate / SPECTRUM_WINDOW_SIZE as f32
|
||||
* SPECTRUM_WINDOW_OVERLAP as f32
|
||||
* self.num_channels as f32;
|
||||
let decay_samples = (SMOOTHING_DECAY_MS / 1000.0 * effective_sample_rate) as f64;
|
||||
|
||||
self.smoothing_decay_weight = 0.25f64.powf(decay_samples.recip()) as f32
|
||||
}
|
||||
|
||||
/// Compute the spectrum for a buffer and send it to the corresponding output pair.
|
||||
pub fn compute(&mut self, buffer: &Buffer) {
|
||||
self.stft.process_analyze_only(
|
||||
buffer,
|
||||
SPECTRUM_WINDOW_OVERLAP,
|
||||
|channel_idx, real_fft_scratch_buffer| {
|
||||
|_channel_idx, real_fft_scratch_buffer| {
|
||||
multiply_with_window(real_fft_scratch_buffer, &self.compensated_window_function);
|
||||
|
||||
self.plan
|
||||
|
@ -96,33 +121,22 @@ impl SpectrumInput {
|
|||
)
|
||||
.unwrap();
|
||||
|
||||
// To be able to reuse `real_fft_scratch_buffer` this function is called per
|
||||
// channel, so we need to use the channel index to do any pre- or post-processing.
|
||||
// Gain compensation has already been baked into the window function.
|
||||
// TODO: This obviously needs a low-pass/moving average
|
||||
if channel_idx == 0 {
|
||||
for (bin, spectrum_result) in self
|
||||
.complex_fft_buffer
|
||||
.iter()
|
||||
.zip(&mut self.spectrum_result_buffer)
|
||||
{
|
||||
*spectrum_result = bin.norm();
|
||||
}
|
||||
} else {
|
||||
for (bin, spectrum_result) in self
|
||||
.complex_fft_buffer
|
||||
.iter()
|
||||
.skip(1)
|
||||
.zip(&mut self.spectrum_result_buffer)
|
||||
{
|
||||
*spectrum_result += bin.norm();
|
||||
}
|
||||
}
|
||||
|
||||
let num_channels_recip = (self.num_channels as f32).recip();
|
||||
if channel_idx == self.num_channels - 1 {
|
||||
for bin in &mut self.spectrum_result_buffer {
|
||||
*bin *= num_channels_recip;
|
||||
// We'll use peak meter-like behavior for the spectrum analyzer to make things
|
||||
// easier to dial in. Values that are higher than the old value snap to the new
|
||||
// value immediately, lower values decay gradually. This also results in quasi-mono
|
||||
// summing since this same callback will be called for both channels. Gain
|
||||
// compensation has already been baked into the window function.
|
||||
for (bin, spectrum_result) in self
|
||||
.complex_fft_buffer
|
||||
.iter()
|
||||
.zip(&mut self.spectrum_result_buffer)
|
||||
{
|
||||
let magnetude = bin.norm();
|
||||
if magnetude > *spectrum_result {
|
||||
*spectrum_result = magnetude;
|
||||
} else {
|
||||
*spectrum_result = (*spectrum_result * self.smoothing_decay_weight)
|
||||
+ (magnetude * (1.0 - self.smoothing_decay_weight));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue