1
0
Fork 0

Add symmetrically and asymmetrically skewed ranges

This is super useful. I'm sure the symmetrical implementation can be
optimized a lot, but my math-fu was not strong enough today.
This commit is contained in:
Robbert van der Helm 2022-02-01 23:37:28 +01:00
parent 740868a10c
commit 7752ce6771
2 changed files with 283 additions and 22 deletions

View file

@ -16,11 +16,31 @@
//! Different ranges for numeric parameters. //! Different ranges for numeric parameters.
/// A distribution for a parameter's range. Probably need to add some forms of skewed ranges and /// A distribution for a parameter's range. All range endpoints are inclusive.
/// maybe a callback based implementation at some point.
#[derive(Debug)] #[derive(Debug)]
pub enum Range<T> { pub enum Range<T> {
/// The values are uniformly distributed between `min` and `max`.
Linear { min: T, max: T }, Linear { min: T, max: T },
/// The range is skewed by a factor. Values above 1.0 will make the end of the range wider,
/// while values between 0 and 1 will skew the range towards the start. Use [Range::skew_factor]
/// for a more intuitively way to calculate the skew factor where positive values skew the range
/// towards the end while negative values skew the range toward the start.
Skewed { min: T, max: T, factor: f32 },
/// The same as [Range::Skewed], but with the skewing happening from a central point.
SymmetricalSkewed {
min: T,
max: T,
factor: f32,
center: T,
},
}
impl Range<()> {
/// Calculate a skew factor for [Range::Skewed] and [Range::SymmetricalSkewed]. Positive values
/// make the end of the range wider while negative make the start of the range wider.
pub fn skew_factor(factor: f32) -> f32 {
2.0f32.powf(factor)
}
} }
/// A normalizable range for type `T`, where `self` is expected to be a type `R<T>`. Higher kinded /// A normalizable range for type `T`, where `self` is expected to be a type `R<T>`. Higher kinded
@ -51,6 +71,34 @@ impl NormalizebleRange<f32> for Range<f32> {
fn normalize(&self, plain: f32) -> f32 { fn normalize(&self, plain: f32) -> f32 {
match &self { match &self {
Range::Linear { min, max } => (plain - min) / (max - min), Range::Linear { min, max } => (plain - min) / (max - min),
Range::Skewed { min, max, factor } => ((plain - min) / (max - min)).powf(*factor),
Range::SymmetricalSkewed {
min,
max,
factor,
center,
} => {
// There's probably a much faster equivalent way to write this. Also, I have no clue
// how I managed to implement this correctly on the first try.
let unscaled_proportion = (plain - min) / (max - min);
let center_proportion = (center - min) / (max - min);
if unscaled_proportion > center_proportion {
// The part above the center gets normalized to a [0, 1] range, skewed, and then
// unnormalized and scaled back to the original [center_proportion, 1] range
let scaled_proportion = (unscaled_proportion - center_proportion)
* (1.0 - center_proportion).recip();
(scaled_proportion.powf(*factor) * (1.0 - center_proportion))
+ center_proportion
} else {
// The part below the center gets scaled, inverted (so the range is [0, 1] where
// 0 corresponds to the center proportion and 1 corresponds to the orignal
// normalized 0 value), skewed, inverted back again, and then scaled back to the
// original range
let inverted_scaled_proportion =
(center_proportion - unscaled_proportion) * (center_proportion).recip();
(1.0 - inverted_scaled_proportion.powf(*factor)) * (center_proportion)
}
}
} }
.clamp(0.0, 1.0) .clamp(0.0, 1.0)
} }
@ -59,6 +107,30 @@ impl NormalizebleRange<f32> for Range<f32> {
let normalized = normalized.clamp(0.0, 1.0); let normalized = normalized.clamp(0.0, 1.0);
match &self { match &self {
Range::Linear { min, max } => (normalized * (max - min)) + min, Range::Linear { min, max } => (normalized * (max - min)) + min,
Range::Skewed { min, max, factor } => {
(normalized.powf(factor.recip()) * (max - min)) + min
}
Range::SymmetricalSkewed {
min,
max,
factor,
center,
} => {
// Reconstructing the subranges works the same as with the normal skewed ranges
let center_proportion = (center - min) / (max - min);
let skewed_proportion = if normalized > center_proportion {
let scaled_proportion =
(normalized - center_proportion) * (1.0 - center_proportion).recip();
(scaled_proportion.powf(factor.recip()) * (1.0 - center_proportion))
+ center_proportion
} else {
let inverted_scaled_proportion =
(center_proportion - normalized) * (center_proportion).recip();
(1.0 - inverted_scaled_proportion.powf(factor.recip())) * (center_proportion)
};
(skewed_proportion * (max - min)) + min
}
} }
} }
} }
@ -67,6 +139,29 @@ impl NormalizebleRange<i32> for Range<i32> {
fn normalize(&self, plain: i32) -> f32 { fn normalize(&self, plain: i32) -> f32 {
match &self { match &self {
Range::Linear { min, max } => (plain - min) as f32 / (max - min) as f32, Range::Linear { min, max } => (plain - min) as f32 / (max - min) as f32,
Range::Skewed { min, max, factor } => {
((plain - min) as f32 / (max - min) as f32).powf(*factor)
}
Range::SymmetricalSkewed {
min,
max,
factor,
center,
} => {
// See the comments in the float version
let unscaled_proportion = (plain - min) as f32 / (max - min) as f32;
let center_proportion = (center - min) as f32 / (max - min) as f32;
if unscaled_proportion > center_proportion {
let scaled_proportion = (unscaled_proportion - center_proportion)
* (1.0 - center_proportion).recip();
(scaled_proportion.powf(*factor) * (1.0 - center_proportion))
+ center_proportion
} else {
let inverted_scaled_proportion =
(center_proportion - unscaled_proportion) * (center_proportion).recip();
(1.0 - inverted_scaled_proportion.powf(*factor)) * (center_proportion)
}
}
} }
.clamp(0.0, 1.0) .clamp(0.0, 1.0)
} }
@ -75,6 +170,29 @@ impl NormalizebleRange<i32> for Range<i32> {
let normalized = normalized.clamp(0.0, 1.0); let normalized = normalized.clamp(0.0, 1.0);
match &self { match &self {
Range::Linear { min, max } => (normalized * (max - min) as f32).round() as i32 + min, Range::Linear { min, max } => (normalized * (max - min) as f32).round() as i32 + min,
Range::Skewed { min, max, factor } => {
(normalized.powf(factor.recip()) * (max - min) as f32).round() as i32 + min
}
Range::SymmetricalSkewed {
min,
max,
factor,
center,
} => {
let center_proportion = (center - min) as f32 / (max - min) as f32;
let skewed_proportion = if normalized > center_proportion {
let scaled_proportion =
(normalized - center_proportion) * (1.0 - center_proportion).recip();
(scaled_proportion.powf(factor.recip()) * (1.0 - center_proportion))
+ center_proportion
} else {
let inverted_scaled_proportion =
(center_proportion - normalized) * (center_proportion).recip();
(1.0 - inverted_scaled_proportion.powf(factor.recip())) * (center_proportion)
};
(skewed_proportion * (max - min) as f32).round() as i32 + min
}
} }
} }
} }
@ -94,33 +212,174 @@ mod tests {
Range::Linear { min: -10, max: 10 } Range::Linear { min: -10, max: 10 }
} }
#[test] fn make_skewed_float_range(factor: f32) -> Range<f32> {
fn range_normalize_linear_float() { Range::Skewed {
let range = make_linear_float_range(); min: 10.0,
assert_eq!(range.normalize(17.5), 0.75); max: 20.0,
factor,
}
} }
#[test] fn make_skewed_int_range(factor: f32) -> Range<i32> {
fn range_normalize_linear_int() { Range::Skewed {
let range = make_linear_int_range(); min: -10,
assert_eq!(range.normalize(-5), 0.25); max: 10,
factor,
}
} }
#[test] fn make_symmetrical_skewed_float_range(factor: f32) -> Range<f32> {
fn range_unnormalize_linear_float() { Range::SymmetricalSkewed {
let range = make_linear_float_range(); min: 10.0,
assert_eq!(range.unnormalize(0.25), 12.5); max: 20.0,
factor,
center: 12.5,
}
} }
#[test] fn make_symmetrical_skewed_int_range(factor: f32) -> Range<i32> {
fn range_unnormalize_linear_int() { Range::SymmetricalSkewed {
let range = make_linear_int_range(); min: -10,
assert_eq!(range.unnormalize(0.75), 5); max: 10,
factor,
center: -3,
}
} }
#[test] mod linear {
fn range_unnormalize_linear_int_rounding() { use super::super::*;
let range = make_linear_int_range(); use super::*;
assert_eq!(range.unnormalize(0.73), 5);
#[test]
fn range_normalize_float() {
let range = make_linear_float_range();
assert_eq!(range.normalize(17.5), 0.75);
}
#[test]
fn range_normalize_int() {
let range = make_linear_int_range();
assert_eq!(range.normalize(-5), 0.25);
}
#[test]
fn range_unnormalize_float() {
let range = make_linear_float_range();
assert_eq!(range.unnormalize(0.25), 12.5);
}
#[test]
fn range_unnormalize_int() {
let range = make_linear_int_range();
assert_eq!(range.unnormalize(0.75), 5);
}
#[test]
fn range_unnormalize_int_rounding() {
let range = make_linear_int_range();
assert_eq!(range.unnormalize(0.73), 5);
}
}
mod skewed {
use super::super::*;
use super::*;
#[test]
fn range_normalize_float() {
let range = make_skewed_float_range(Range::skew_factor(-2.0));
assert_eq!(range.normalize(17.5), 0.9306048591020996);
}
#[test]
fn range_normalize_int() {
let range = make_skewed_int_range(Range::skew_factor(-2.0));
assert_eq!(range.normalize(-5), 0.7071067811865476);
}
#[test]
fn range_unnormalize_float() {
let range = make_skewed_float_range(Range::skew_factor(-2.0));
assert_eq!(range.unnormalize(0.9306048591020996), 17.5);
}
#[test]
fn range_unnormalize_int() {
let range = make_skewed_int_range(Range::skew_factor(-2.0));
assert_eq!(range.unnormalize(0.7071067811865476), -5);
}
#[test]
fn range_normalize_linear_equiv_float() {
let linear_range = make_linear_float_range();
let skewed_range = make_skewed_float_range(1.0);
assert_eq!(linear_range.normalize(17.5), skewed_range.normalize(17.5));
}
#[test]
fn range_normalize_linear_equiv_int() {
let linear_range = make_linear_int_range();
let skewed_range = make_skewed_int_range(1.0);
assert_eq!(linear_range.normalize(-5), skewed_range.normalize(-5));
}
#[test]
fn range_unnormalize_linear_equiv_float() {
let linear_range = make_linear_float_range();
let skewed_range = make_skewed_float_range(1.0);
assert_eq!(
linear_range.unnormalize(0.25),
skewed_range.unnormalize(0.25)
);
}
#[test]
fn range_unnormalize_linear_equiv_int() {
let linear_range = make_linear_int_range();
let skewed_range = make_skewed_int_range(1.0);
assert_eq!(
linear_range.unnormalize(0.25),
skewed_range.unnormalize(0.25)
);
}
#[test]
fn range_unnormalize_linear_equiv_int_rounding() {
let linear_range = make_linear_int_range();
let skewed_range = make_skewed_int_range(1.0);
assert_eq!(
linear_range.unnormalize(0.73),
skewed_range.unnormalize(0.73)
);
}
}
mod symmetrical_skewed {
use super::super::*;
use super::*;
#[test]
fn range_normalize_float() {
let range = make_symmetrical_skewed_float_range(Range::skew_factor(-2.0));
assert_eq!(range.normalize(17.5), 0.9277015);
}
#[test]
fn range_normalize_int() {
let range = make_symmetrical_skewed_int_range(Range::skew_factor(-2.0));
assert_eq!(range.normalize(-5), 0.09411134);
}
#[test]
fn range_unnormalize_float() {
let range = make_symmetrical_skewed_float_range(Range::skew_factor(-2.0));
assert_eq!(range.unnormalize(0.9277015), 17.5);
}
#[test]
fn range_unnormalize_int() {
let range = make_symmetrical_skewed_int_range(Range::skew_factor(-2.0));
assert_eq!(range.unnormalize(0.09411134), -5);
}
} }
} }

View file

@ -636,6 +636,8 @@ impl<P: Plugin> IEditController for Wrapper<'_, P> {
ParamPtr::FloatParam(_) => 0, ParamPtr::FloatParam(_) => 0,
ParamPtr::IntParam(p) => match (**p).range { ParamPtr::IntParam(p) => match (**p).range {
crate::param::Range::Linear { min, max } => max - min, crate::param::Range::Linear { min, max } => max - min,
crate::param::Range::Skewed { min, max, .. } => max - min,
crate::param::Range::SymmetricalSkewed { min, max, .. } => max - min,
}, },
ParamPtr::BoolParam(_) => 1, ParamPtr::BoolParam(_) => 1,
}; };