1
0
Fork 0

Add a dry-wet mixer to Spectral Compressor

This commit is contained in:
Robbert van der Helm 2022-07-20 18:40:32 +02:00
parent 46faaaf1ac
commit 7c66f5d856
2 changed files with 200 additions and 3 deletions

View file

@ -0,0 +1,168 @@
// Spectral Compressor: an FFT based compressor
// Copyright (C) 2021-2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use nih_plug::prelude::Buffer;
/// A simple dry-wet mixer with latency compensation that operates on entire buffers.
pub struct DryWetMixer {
/// The delay line for the latency compensation. This is indexed by `[channel_idx][sample_idx]`,
/// with the size set to the maximum latency plus the maximum block size rounded up to the next
/// power of two.
delay_line: Vec<Vec<f32>>,
/// The position in the inner delay line buffer where the next samples should be written from.
/// This is incremented after writing. When reading the data for mixing the dry signal back in,
/// the starting read position is determined by subtracting the buffer's length from this
/// position and then subtracting the latency.
next_write_position: usize,
}
/// The mixing style for the [`DryWetMixer`].
#[derive(Debug, Clone, Copy)]
#[allow(unused)]
pub enum MixingStyle {
Linear,
EqualPower,
}
impl DryWetMixer {
/// Set up the mixer for the given parameters.
pub fn new(num_channels: usize, max_block_size: usize, max_latency: usize) -> Self {
// TODO: This could be more efficient if we don't use the entire buffer when the actual
// latency is lower than the maximum latency, but that's an optimization for later
let delay_line_len = (max_block_size + max_latency).next_power_of_two();
DryWetMixer {
delay_line: vec![vec![0.0; delay_line_len]; num_channels],
next_write_position: 0,
}
}
/// Resize the itnernal buffers to fit new parameters.
pub fn resize(&mut self, num_channels: usize, max_block_size: usize, max_latency: usize) {
let delay_line_len = (max_block_size + max_latency).next_power_of_two();
self.delay_line.resize_with(num_channels, Vec::new);
for buffer in &mut self.delay_line {
buffer.resize(delay_line_len, 0.0);
buffer.fill(0.0);
}
self.next_write_position = 0;
}
/// Clear out the buffers.
pub fn reset(&mut self) {
for buffer in &mut self.delay_line {
buffer.fill(0.0);
}
self.next_write_position = 0;
}
/// Write the dry signal into the buffer. This should be called at the start of the process
/// function.
///
/// # Panics
///
/// Panics if the buffer is larger than the maximum block size or if the channel counts don't
/// match.
pub fn write_dry(&mut self, buffer: &Buffer) {
if buffer.channels() == 0 {
return;
}
assert_eq!(buffer.channels(), self.delay_line.len());
let delay_line_len = self.delay_line[0].len();
assert!(buffer.len() <= delay_line_len);
let num_samples_before_wrap = buffer.len().min(delay_line_len - self.next_write_position);
let num_samples_after_wrap = buffer.len() - num_samples_before_wrap;
for (buffer_channel, delay_line) in buffer
.as_slice_immutable()
.iter()
.zip(self.delay_line.iter_mut())
{
delay_line
[self.next_write_position..self.next_write_position + num_samples_before_wrap]
.copy_from_slice(&buffer_channel[..num_samples_before_wrap]);
delay_line[..num_samples_after_wrap]
.copy_from_slice(&buffer_channel[num_samples_before_wrap..]);
}
self.next_write_position = (self.next_write_position + buffer.len()) % delay_line_len;
}
/// Mix the dry signal into the buffer. The ratio is a `[0, 1]` integer where 0 results in an
/// all-dry signal, and 1 results in an all-wet signal. This should be called at the start of
/// the process function.
///
/// # Panics
///
/// Panics if the buffer is larger than the maximum block size, if the latency is larger than
/// the maximum latency, or if the channel counts don't match.
pub fn mix_in_dry(
&mut self,
buffer: &mut Buffer,
ratio: f32,
style: MixingStyle,
latency: usize,
) {
if buffer.channels() == 0 {
return;
}
let ratio = ratio.clamp(0.0, 1.0);
if ratio == 1.0 {
return;
}
let (wet_t, dry_t) = match style {
MixingStyle::Linear => (ratio, 1.0 - ratio),
MixingStyle::EqualPower => (ratio.sqrt(), (1.0 - ratio).sqrt()),
};
assert_eq!(buffer.channels(), self.delay_line.len());
let delay_line_len = self.delay_line[0].len();
assert!(buffer.len() + latency <= delay_line_len);
let read_position =
(self.next_write_position + delay_line_len - buffer.len() - latency) % delay_line_len;
let num_samples_before_wrap = buffer.len().min(delay_line_len - read_position);
let num_samples_after_wrap = buffer.len() - num_samples_before_wrap;
for (buffer_channel, delay_line) in buffer.as_slice().iter_mut().zip(self.delay_line.iter())
{
if ratio == 0.0 {
buffer_channel[..num_samples_before_wrap].copy_from_slice(
&delay_line[read_position..read_position + num_samples_before_wrap],
);
buffer_channel[num_samples_before_wrap..]
.copy_from_slice(&delay_line[..num_samples_after_wrap]);
} else {
for (buffer_sample, delay_sample) in buffer_channel[..num_samples_before_wrap]
.iter_mut()
.zip(&delay_line[read_position..read_position + num_samples_before_wrap])
{
*buffer_sample = (*buffer_sample * wet_t) + (delay_sample * dry_t);
}
for (buffer_sample, delay_sample) in buffer_channel[num_samples_before_wrap..]
.iter_mut()
.zip(&delay_line[..num_samples_after_wrap])
{
*buffer_sample = (*buffer_sample * wet_t) + (delay_sample * dry_t);
}
}
}
}
}

View file

@ -20,6 +20,7 @@ use realfft::num_complex::Complex32;
use realfft::{ComplexToReal, RealFftPlanner, RealToComplex};
use std::sync::Arc;
mod dry_wet_mixer;
mod editor;
const MIN_WINDOW_ORDER: usize = 6;
@ -51,6 +52,8 @@ struct SpectralCompressor {
/// Contains a Hann window function of the current window length, passed to the overlap-add
/// helper. Allocated with a `MAX_WINDOW_SIZE` initial capacity.
window_function: Vec<f32>,
/// A mixer to mix the dry signal back into the processed signal with latency compensation.
dry_wet_mixer: dry_wet_mixer::DryWetMixer,
/// The algorithms for the FFT and IFFT operations, for each supported order so we can switch
/// between them without replanning or allocations. Initialized during `initialize()`.
@ -96,9 +99,10 @@ impl Default for SpectralCompressor {
params: Arc::new(SpectralCompressorParams::default()),
editor_state: editor::default_state(),
// These two will be set to the correct values in the initialize function
// These three will be set to the correct values in the initialize function
stft: util::StftHelper::new(Self::DEFAULT_NUM_OUTPUTS as usize, MAX_WINDOW_SIZE, 0),
window_function: Vec::with_capacity(MAX_WINDOW_SIZE),
dry_wet_mixer: dry_wet_mixer::DryWetMixer::new(0, 0, 0),
// This is initialized later since we don't want to do non-trivial computations before
// the plugin is initialized
@ -136,6 +140,7 @@ impl Default for SpectralCompressorParams {
auto_makeup_gain: BoolParam::new("Auto Makeup Gain", true),
dry_wet_ratio: FloatParam::new("Mix", 1.0, FloatRange::Linear { min: 0.0, max: 1.0 })
.with_unit("%")
.with_smoother(SmoothingStyle::Linear(15.0))
.with_value_to_string(formatters::v2s_f32_percentage(0))
.with_string_to_value(formatters::s2v_f32_percentage()),
dc_filter: BoolParam::new("DC Filter", true),
@ -172,7 +177,7 @@ impl Plugin for SpectralCompressor {
fn initialize(
&mut self,
bus_config: &BusConfig,
_buffer_config: &BufferConfig,
buffer_config: &BufferConfig,
context: &mut impl InitContext,
) -> bool {
// This plugin can accept any number of channels, so we need to resize channel-dependent
@ -181,6 +186,12 @@ impl Plugin for SpectralCompressor {
self.stft = util::StftHelper::new(self.stft.num_channels(), MAX_WINDOW_SIZE, 0);
}
self.dry_wet_mixer.resize(
bus_config.num_output_channels as usize,
buffer_config.max_buffer_size as usize,
MAX_WINDOW_SIZE,
);
// Planning with RustFFT is very fast, but it will still allocate we we'll plan all of the
// FFTs we might need in advance
if self.plan_for_order.is_none() {
@ -206,6 +217,10 @@ impl Plugin for SpectralCompressor {
true
}
fn reset(&mut self) {
self.dry_wet_mixer.reset();
}
fn process(
&mut self,
buffer: &mut Buffer,
@ -244,7 +259,10 @@ impl Plugin for SpectralCompressor {
util::db_to_gain(self.params.input_gain_db.value) * gain_compensation.sqrt();
let output_gain =
util::db_to_gain(self.params.output_gain_db.value) * gain_compensation.sqrt();
// TODO: Mix in the dry signal
// TODO: Auto makeup gain
// This is mixed in later with latency compensation applied
self.dry_wet_mixer.write_dry(buffer);
self.stft
.process_overlap_add(buffer, overlap_times, |_channel_idx, real_fft_buffer| {
@ -291,6 +309,17 @@ impl Plugin for SpectralCompressor {
}
});
self.dry_wet_mixer.mix_in_dry(
buffer,
self.params
.dry_wet_ratio
.smoothed
.next_step(buffer.len() as u32),
// The dry and wet signals are in phase, so we can do a linear mix
dry_wet_mixer::MixingStyle::Linear,
self.stft.latency_samples() as usize,
);
ProcessStatus::Normal
}
}