1
0
Fork 0

Store ratio reciprocals instead of ratios

We're doing linear space compression, so we need the reciprocal of the
actual ratio.
This commit is contained in:
Robbert van der Helm 2022-07-22 20:44:36 +02:00
parent ef3a7a76d5
commit c2003879cb

View file

@ -47,14 +47,14 @@ pub struct CompressorBank {
downwards_thresholds: Vec<f32>, downwards_thresholds: Vec<f32>,
/// Upwards compressor thresholds, in linear space. /// Upwards compressor thresholds, in linear space.
upwards_thresholds: Vec<f32>, upwards_thresholds: Vec<f32>,
/// Downwards compressor ratios. At 1.0 the cmopressor won't do anything. If /// The reciprocals of the downwards compressor ratios. At 1.0 the cmopressor won't do anything.
/// [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the same /// If [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the
/// for each compressor. /// same for each compressor. We're doing the compression in linear space to avoid a logarithm,
downwards_ratios: Vec<f32>, /// so the division by the ratio becomes an nth-root, or exponentation by the reciprocal of the
/// Upwards compressor ratios. At 1.0 the cmopressor won't do anything. If /// ratio.
/// [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the same downwards_ratio_recips: Vec<f32>,
/// for each compressor. /// The same as `downwards_ratio_recipss`, but for the upwards compression.
upwards_ratios: Vec<f32>, upwards_ratio_recips: Vec<f32>,
/// The current envelope value for this bin, in linear space. Indexed by /// The current envelope value for this bin, in linear space. Indexed by
/// `[channel_idx][compressor_idx]`. /// `[channel_idx][compressor_idx]`.
@ -353,8 +353,8 @@ impl CompressorBank {
downwards_thresholds: Vec::with_capacity(complex_buffer_len), downwards_thresholds: Vec::with_capacity(complex_buffer_len),
upwards_thresholds: Vec::with_capacity(complex_buffer_len), upwards_thresholds: Vec::with_capacity(complex_buffer_len),
downwards_ratios: Vec::with_capacity(complex_buffer_len), downwards_ratio_recips: Vec::with_capacity(complex_buffer_len),
upwards_ratios: Vec::with_capacity(complex_buffer_len), upwards_ratio_recips: Vec::with_capacity(complex_buffer_len),
envelopes: vec![Vec::with_capacity(complex_buffer_len); num_channels], envelopes: vec![Vec::with_capacity(complex_buffer_len); num_channels],
window_size: 0, window_size: 0,
@ -374,10 +374,10 @@ impl CompressorBank {
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_thresholds.len())); .reserve_exact(complex_buffer_len.saturating_sub(self.downwards_thresholds.len()));
self.upwards_thresholds self.upwards_thresholds
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_thresholds.len())); .reserve_exact(complex_buffer_len.saturating_sub(self.upwards_thresholds.len()));
self.downwards_ratios self.downwards_ratio_recips
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_ratios.len())); .reserve_exact(complex_buffer_len.saturating_sub(self.downwards_ratio_recips.len()));
self.upwards_ratios self.upwards_ratio_recips
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_ratios.len())); .reserve_exact(complex_buffer_len.saturating_sub(self.upwards_ratio_recips.len()));
self.envelopes.resize_with(num_channels, Vec::new); self.envelopes.resize_with(num_channels, Vec::new);
for envelopes in self.envelopes.iter_mut() { for envelopes in self.envelopes.iter_mut() {
@ -402,8 +402,8 @@ impl CompressorBank {
self.downwards_thresholds.resize(complex_buffer_len, 1.0); self.downwards_thresholds.resize(complex_buffer_len, 1.0);
self.upwards_thresholds.resize(complex_buffer_len, 1.0); self.upwards_thresholds.resize(complex_buffer_len, 1.0);
self.downwards_ratios.resize(complex_buffer_len, 1.0); self.downwards_ratio_recips.resize(complex_buffer_len, 1.0);
self.upwards_ratios.resize(complex_buffer_len, 1.0); self.upwards_ratio_recips.resize(complex_buffer_len, 1.0);
for envelopes in self.envelopes.iter_mut() { for envelopes in self.envelopes.iter_mut() {
envelopes.resize(complex_buffer_len, 0.0); envelopes.resize(complex_buffer_len, 0.0);
@ -560,16 +560,20 @@ impl CompressorBank {
{ {
// If the high-frequency rolloff is enabled then higher frequency bins will have their // If the high-frequency rolloff is enabled then higher frequency bins will have their
// ratios reduced to reduce harshness. This follows the octave scale. // ratios reduced to reduce harshness. This follows the octave scale.
let target_ratio = compressor.downwards_ratio.value; let target_ratio_recip = compressor.downwards_ratio.value.recip();
if high_freq_ratio_rolloff == 1.0 { if high_freq_ratio_rolloff == 1.0 {
self.downwards_ratios.fill(target_ratio); self.downwards_ratio_recips.fill(target_ratio_recip);
} else { } else {
for (log2_freq, ratio) in for (log2_freq, ratio) in self
self.log2_freqs.iter().zip(self.downwards_ratios.iter_mut()) .log2_freqs
.iter()
.zip(self.downwards_ratio_recips.iter_mut())
{ {
// This is scaled by octaves since we're calculating this in log space // This is scaled by octaves since we're calculating this in log space
let octave_fraction = log2_freq / log2_nyquist_freq; let octave_fraction = log2_freq / log2_nyquist_freq;
*ratio = target_ratio * (1.0 - (octave_fraction * high_freq_ratio_rolloff)); // Division because we're dealing with the reciprocal here
*ratio =
target_ratio_recip / (1.0 - (octave_fraction * high_freq_ratio_rolloff));
} }
} }
} }
@ -579,14 +583,18 @@ impl CompressorBank {
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst) .compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
.is_ok() .is_ok()
{ {
let target_ratio = compressor.upwards_ratio.value; let target_ratio_recip = compressor.upwards_ratio.value.recip();
if high_freq_ratio_rolloff == 1.0 { if high_freq_ratio_rolloff == 1.0 {
self.upwards_ratios.fill(target_ratio); self.upwards_ratio_recips.fill(target_ratio_recip);
} else { } else {
for (log2_freq, ratio) in self.log2_freqs.iter().zip(self.upwards_ratios.iter_mut()) for (log2_freq, ratio) in self
.log2_freqs
.iter()
.zip(self.upwards_ratio_recips.iter_mut())
{ {
let octave_fraction = log2_freq / log2_nyquist_freq; let octave_fraction = log2_freq / log2_nyquist_freq;
*ratio = target_ratio * (1.0 - (octave_fraction * high_freq_ratio_rolloff)); *ratio =
target_ratio_recip / (1.0 - (octave_fraction * high_freq_ratio_rolloff));
} }
} }
} }