1
0
Fork 0

Compute a spectrum in Diopser

This will be used in the GUI.
This commit is contained in:
Robbert van der Helm 2022-03-07 13:57:24 +01:00
parent 376c1d7b0a
commit e1e6b2137e
4 changed files with 183 additions and 0 deletions

17
Cargo.lock generated
View file

@ -131,6 +131,12 @@ dependencies = [
"pkg-config",
]
[[package]]
name = "cache-padded"
version = "1.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c1db59621ec70f09c5e9b597b220c7a2b43611f4710dc03ceb8748637775692c"
[[package]]
name = "cargo-nih-plug"
version = "0.1.0"
@ -348,8 +354,10 @@ checksum = "b365fabc795046672053e29c954733ec3b05e4be654ab130fe8f1f94d7051f35"
name = "diopser"
version = "0.1.0"
dependencies = [
"fftw",
"nih_plug",
"nih_plug_egui",
"triple_buffer",
]
[[package]]
@ -1193,6 +1201,15 @@ dependencies = [
"serde",
]
[[package]]
name = "triple_buffer"
version = "6.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3714f6e01298e993bbe4996fefc2b301c1d6127d8630c1f46e531f31809f2d99"
dependencies = [
"cache-padded",
]
[[package]]
name = "ttf-parser"
version = "0.15.0"

View file

@ -17,3 +17,7 @@ simd = ["nih_plug/simd"]
[dependencies]
nih_plug = { path = "../../", features = ["assert_process_allocs"] }
nih_plug_egui = { path = "../../nih_plug_egui" }
# For the GUI
fftw = "0.7"
triple_buffer = "6.0"

View file

@ -29,8 +29,11 @@ use std::simd::f32x2;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use crate::spectrum::{SpectrumInput, SpectrumOutput};
mod editor;
mod filter;
mod spectrum;
/// How many all-pass filters we can have in series at most. The filter stages parameter determines
/// how many filters are actually active.
@ -67,6 +70,11 @@ struct Diopser {
/// reduce the DSP load of automation parameters. It can also cause some fun sounding glitchy
/// effects when the precision is low.
next_filter_smoothing_in: i32,
/// When the GUI is open we compute the spectrum on the audio thread and send it to the GUI.
spectrum_input: SpectrumInput,
/// This can be cloned and moved into the editor.
spectrum_output: Arc<SpectrumOutput>,
}
// TODO: Some combinations of parameters can cause really loud resonance. We should limit the
@ -111,6 +119,10 @@ impl Default for Diopser {
fn default() -> Self {
let should_update_filters = Arc::new(AtomicBool::new(false));
// We only do stereo right now so this is simple
let (spectrum_input, spectrum_output) =
SpectrumInput::new(Self::DEFAULT_NUM_OUTPUTS as usize);
Self {
params: Arc::pin(DiopserParams::new(should_update_filters.clone())),
editor_state: editor::default_state(),
@ -121,6 +133,9 @@ impl Default for Diopser {
should_update_filters,
next_filter_smoothing_in: 1,
spectrum_input,
spectrum_output: Arc::new(spectrum_output),
}
}
}
@ -273,6 +288,11 @@ impl Plugin for Diopser {
unsafe { channel_samples.from_simd_unchecked(samples) };
}
// Compute a spectrum for the GUI if needed
if self.editor_state.is_open() {
self.spectrum_input.compute(buffer);
}
ProcessStatus::Normal
}
}

View file

@ -0,0 +1,142 @@
// Diopser: a phase rotation plugin
// Copyright (C) 2021-2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use fftw::array::AlignedVec;
use fftw::plan::{R2CPlan, R2CPlan32};
use fftw::types::{c32, Flag};
use nih_plug::prelude::*;
use std::f32;
use triple_buffer::TripleBuffer;
pub const SPECTRUM_WINDOW_SIZE: usize = 2048;
// Don't need that much precision here
const SPECTRUM_WINDOW_OVERLAP: usize = 2;
/// The amplitudes of all frequency bins in a windowed FFT of the input, minus the DC offset bin.
pub type Spectrum = [f32; SPECTRUM_WINDOW_SIZE / 2];
/// A receiver for a spectrum computed by [`SpectrumInput`].
pub type SpectrumOutput = triple_buffer::Output<Spectrum>;
/// Continuously compute spectrums and send them to the connected [`SpectrumOutput`].
pub struct SpectrumInput {
/// A helper to do most of the STFT process.
stft: util::StftHelper,
/// The number of channels we're working on.
num_channels: usize,
/// A way to send data to the corresponding [`SpectrumOutput`]. `spectrum_result_buffer` gets
/// copied into this buffer every time a new spectrum is available.
triple_buffer_input: triple_buffer::Input<Spectrum>,
/// A scratch buffer to compute the resulting power amplitude spectrum.
spectrum_result_buffer: Spectrum,
/// The algorithm for the FFT operation.
plan: Plan,
/// A Hann window window, passed to the STFT helper. The gain compensation is already part of
/// this window to save a multiplication step.
compensated_window_function: Vec<f32>,
/// Scratch buffers for computing our FFT. The [`StftHelper`] already contains a buffer for the
/// real values.
complex_fft_scratch_buffer: AlignedVec<c32>,
}
/// FFTW uses raw pointers which aren't Send+Sync, so we'll wrap this in a separate struct.
struct Plan {
r2c_plan: R2CPlan32,
}
unsafe impl Send for Plan {}
unsafe impl Sync for Plan {}
impl SpectrumInput {
/// Create a new spectrum input and output pair. The output should be moved to the editor.
pub fn new(num_channels: usize) -> (SpectrumInput, SpectrumOutput) {
let (triple_buffer_input, triple_buffer_output) =
TripleBuffer::new(&[0.0; SPECTRUM_WINDOW_SIZE / 2]).split();
let input = Self {
stft: util::StftHelper::new(num_channels, SPECTRUM_WINDOW_SIZE),
num_channels,
triple_buffer_input,
spectrum_result_buffer: [0.0; SPECTRUM_WINDOW_SIZE / 2],
plan: Plan {
r2c_plan: R2CPlan32::aligned(&[SPECTRUM_WINDOW_SIZE], Flag::MEASURE).unwrap(),
},
compensated_window_function: util::window::hann(SPECTRUM_WINDOW_SIZE)
.into_iter()
// Include the gain compensation in the window function to save some multiplications
.map(|x| x / SPECTRUM_WINDOW_SIZE as f32)
.collect(),
complex_fft_scratch_buffer: AlignedVec::new(SPECTRUM_WINDOW_SIZE / 2 + 1),
};
(input, triple_buffer_output)
}
/// Compute the spectrum for a buffer and send it to the corresponding output pair.
pub fn compute(&mut self, buffer: &Buffer) {
self.stft.process_analyze_only(
buffer,
&self.compensated_window_function,
SPECTRUM_WINDOW_OVERLAP,
|channel_idx, real_fft_scratch_buffer| {
// Forward FFT, the helper has already applied window function
self.plan
.r2c_plan
.r2c(
real_fft_scratch_buffer,
&mut self.complex_fft_scratch_buffer,
)
.unwrap();
// To be able to reuse `real_fft_scratch_buffer` this function is called per
// channel, so we need to use the channel index to do any pre- or post-processing.
// Gain compensation has already been baked into the window function.
if channel_idx == 0 {
for (bin, spectrum_result) in self
.complex_fft_scratch_buffer
.iter()
// We don't care about the DC bin
.skip(1)
.zip(&mut self.spectrum_result_buffer)
{
*spectrum_result = bin.norm();
}
} else {
for (bin, spectrum_result) in self
.complex_fft_scratch_buffer
.iter()
.skip(1)
.zip(&mut self.spectrum_result_buffer)
{
*spectrum_result += bin.norm();
}
}
let num_channels_recip = (self.num_channels as f32).recip();
if channel_idx == self.num_channels - 1 {
for bin in &mut self.spectrum_result_buffer {
*bin *= num_channels_recip;
}
}
self.triple_buffer_input.write(self.spectrum_result_buffer);
},
);
}
}