use std::cmp; use std::marker::PhantomData; use std::os::raw::c_char; use vst3_sys::vst::TChar; use widestring::U16CString; #[cfg(all(debug_assertions, feature = "assert_process_allocs"))] #[global_allocator] static A: assert_no_alloc::AllocDisabler = assert_no_alloc::AllocDisabler; /// A Rabin fingerprint based string hash for parameter ID strings. pub fn hash_param_id(id: &str) -> u32 { let mut has_overflown = false; let mut hash: u32 = 0; for char in id.bytes() { // No destructuring assignments on stable Rust yet, somehow that just works on nightly // without needing to add a feature attribute let (hash2, overflow2) = hash.overflowing_mul(31); let (hash3, overflow3) = hash2.overflowing_add(char as u32); hash = hash3; has_overflown |= overflow2 || overflow3; } if has_overflown { nih_log!( "Overflow while hashing param ID \"{}\", consider using 6 character IDs to avoid collissions", id ); } // Studio One apparently doesn't like negative parameters, so JUCE just zeroes out the sign bit hash &= !(1 << 31); hash } /// The equivalent of the `strlcpy()` C function. Copy `src` to `dest` as a null-terminated /// C-string. If `dest` does not have enough capacity, add a null terminator at the end to prevent /// buffer overflows. pub fn strlcpy(dest: &mut [c_char], src: &str) { if dest.is_empty() { return; } let src_bytes: &[u8] = src.as_bytes(); let src_bytes_signed: &[i8] = unsafe { &*(src_bytes as *const [u8] as *const [i8]) }; // Make sure there's always room for a null terminator let copy_len = cmp::min(dest.len() - 1, src.len()); dest[..copy_len].copy_from_slice(&src_bytes_signed[..copy_len]); dest[copy_len] = 0; } /// The same as [strlcpy()], but for VST3's fun UTF-16 strings instead. pub fn u16strlcpy(dest: &mut [TChar], src: &str) { if dest.is_empty() { return; } let src_utf16 = match U16CString::from_str(src) { Ok(s) => s, Err(err) => { nih_debug_assert_failure!("Invalid UTF-16 string: {}", err); return; } }; let src_utf16_chars = src_utf16.as_slice(); let src_utf16_chars_signed: &[TChar] = unsafe { &*(src_utf16_chars as *const [u16] as *const [TChar]) }; // Make sure there's always room for a null terminator let copy_len = cmp::min(dest.len() - 1, src_utf16_chars_signed.len()); dest[..copy_len].copy_from_slice(&src_utf16_chars_signed[..copy_len]); dest[copy_len] = 0; } /// A wrapper around the entire process function, including the plugin wrapper parts. This sets up /// `assert_no_alloc` if needed, while also making sure that things like FTZ are set up correctly if /// the host has not already done so. pub fn process_wrapper T>(f: F) -> T { // Make sure FTZ is always enabled, even if the host doesn't do it for us let _ftz_guard = ScopedFtz::enable(); cfg_if::cfg_if! { if #[cfg(all(debug_assertions, feature = "assert_process_allocs"))] { assert_no_alloc::assert_no_alloc(f) } else { f() } } } /// Enable the CPU's Flush To Zero flag while this object is in scope. If the flag was not already /// set, it will be restored to its old value when this gets dropped. struct ScopedFtz { /// Whether FTZ should be disabled again, i.e. if FTZ was not enabled before. should_disable_again: bool, /// We can't directly implement !Send and !Sync, but this will do the same thing. This object /// affects the current thread's floating point registers, so it may only be dropped on the /// current thread. send_sync_marker: PhantomData<*const ()>, } impl ScopedFtz { fn enable() -> Self { cfg_if::cfg_if! { if #[cfg(target_feature = "sse")] { let mode = unsafe { std::arch::x86_64::_MM_GET_FLUSH_ZERO_MODE() }; if mode != std::arch::x86_64::_MM_FLUSH_ZERO_ON { unsafe { std::arch::x86_64::_MM_SET_FLUSH_ZERO_MODE(std::arch::x86_64::_MM_FLUSH_ZERO_ON) }; Self { should_disable_again: true, send_sync_marker: PhantomData, } } else { Self { should_disable_again: false, send_sync_marker: PhantomData, } } } else { Self { old_ftz_mode: None, send_sync_marker: PhantomData, } } } } } impl Drop for ScopedFtz { fn drop(&mut self) { if self.should_disable_again { cfg_if::cfg_if! { if #[cfg(target_feature = "sse")] { unsafe { std::arch::x86_64::_MM_SET_FLUSH_ZERO_MODE(std::arch::x86_64::_MM_FLUSH_ZERO_OFF) }; } }; } } } mod miri { use std::ffi::CStr; use widestring::U16CStr; use super::*; #[test] fn strlcpy_normal() { let mut dest = [0; 256]; strlcpy(&mut dest, "Hello, world!"); assert_eq!( unsafe { CStr::from_ptr(dest.as_ptr()) }.to_str(), Ok("Hello, world!") ); } #[test] fn strlcpy_overflow() { let mut dest = [0; 6]; strlcpy(&mut dest, "Hello, world!"); assert_eq!( unsafe { CStr::from_ptr(dest.as_ptr()) }.to_str(), Ok("Hello") ); } #[test] fn u16strlcpy_normal() { let mut dest = [0; 256]; u16strlcpy(&mut dest, "Hello, world!"); assert_eq!( unsafe { U16CStr::from_ptr_str(dest.as_ptr() as *const u16) } .to_string() .unwrap(), "Hello, world!" ); } #[test] fn u16strlcpy_overflow() { let mut dest = [0; 6]; u16strlcpy(&mut dest, "Hello, world!"); assert_eq!( unsafe { U16CStr::from_ptr_str(dest.as_ptr() as *const u16) } .to_string() .unwrap(), "Hello" ); } }