// nih-plugs: plugins, but rewritten in Rust // Copyright (C) 2022 Robbert van der Helm // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use std::collections::HashMap; use std::fmt::Display; use std::pin::Pin; pub type FloatParam = PlainParam; pub type IntParam = PlainParam; /// A distribution for a parameter's range. Probably need to add some forms of skewed ranges and /// maybe a callback based implementation at some point. #[derive(Debug)] pub enum Range { Linear { min: T, max: T }, } /// A normalizable range for type `T`, where `self` is expected to be a type `R`. Higher kinded /// types would have made this trait definition a lot clearer. trait NormalizebleRange { /// Normalize an unnormalized value. Will be clamped to the bounds of the range if the /// normalized value exceeds `[0, 1]`. fn normalize(&self, unnormalized: T) -> f32; /// Unnormalize a normalized value. Will be clamped to `[0, 1]` if the unnormalized value would /// exceed that range. fn unnormalize(&self, normalized: f32) -> T; } /// A numerical parameter that's stored unnormalized. The range is used for the normalization /// process. pub struct PlainParam { /// The field's current, normalized value. Should be initialized with the default value. Storing /// parameter values like this instead of in a single contiguous array is bad for cache /// locality, but it does allow for a much nicer declarative API. pub value: T, /// The distribution of the parameter's values. pub range: Range, /// The parameter's human readable display name. pub name: &'static str, /// The parameter value's unit, added after `value_to_string` if that is set. pub unit: &'static str, /// Optional custom conversion function from an **unnormalized** value to a string. pub value_to_string: Option String>>, /// Optional custom conversion function from a string to an **unnormalized** value. If the /// string cannot be parsed, then this should return a `None`. If this happens while the /// parameter is being updated then the update will be canceled. pub string_to_value: Option Option>>, } /// Describes a single normalized parameter and also stores its value. /// /// TODO: This is an implementation detail, maybe hide this somewhere else pub enum ParamPtr { FloatParam(*mut FloatParam), IntParam(*mut IntParam), } /// Describes a struct containing parameters. The idea is that we can have a normal struct /// containing [FloatParam] and other parameter types with attributes describing a unique identifier /// for each parameter. We can then build a mapping from those parameter IDs to the parameters using /// the [param_map] function. That way we can have easy to work with JUCE-style parameter objects in /// the plugin without needing to manually register each parameter, like you would in JUCE. /// /// # Safety /// /// This implementation is safe when using from the wrapper because the plugin object needs to be /// pinned, and it can never outlive the wrapper. /// /// TODO: Create a derive macro for this pub trait Params { /// Create a mapping from unique parameter IDs to parameters. Dereferencing the pointers stored /// in the values is only valid as long as this pinned object is valid. fn param_map(self: Pin<&Self>) -> HashMap<&'static str, ParamPtr>; } impl ParamPtr { /// Get the human readable name for this parameter. /// /// # Safety /// /// Calling this function is only safe as long as the object this `ParamPtr` was created for is /// still alive. pub unsafe fn name(&self) -> &'static str { match &self { ParamPtr::FloatParam(p) => (**p).name, ParamPtr::IntParam(p) => (**p).name, } } /// Set this parameter based on a string. Returns whether the updating succeeded. That can fail /// if the string cannot be parsed. /// /// # Safety /// /// Calling this function is only safe as long as the object this `ParamPtr` was created for is /// still alive. pub unsafe fn from_string(&mut self, string: &str) -> bool { match &self { ParamPtr::FloatParam(p) => (**p).from_string(string), ParamPtr::IntParam(p) => (**p).from_string(string), } } /// Get the normalized `[0, 1]` value for this parameter. /// /// # Safety /// /// Calling this function is only safe as long as the object this `ParamPtr` was created for is /// still alive. pub unsafe fn normalized_value(&self) -> f32 { match &self { ParamPtr::FloatParam(p) => (**p).normalized_value(), ParamPtr::IntParam(p) => (**p).normalized_value(), } } /// Set this parameter based on a normalized value. /// /// # Safety /// /// Calling this function is only safe as long as the object this `ParamPtr` was created for is /// still alive. pub unsafe fn set_normalized_value(&self, normalized: f32) { match &self { ParamPtr::FloatParam(p) => (**p).set_normalized_value(normalized), ParamPtr::IntParam(p) => (**p).set_normalized_value(normalized), } } } macro_rules! impl_plainparam { ($ty:ty) => { impl $ty { /// Set this parameter based on a string. Returns whether the updating succeeded. That /// can fail if the string cannot be parsed. /// /// TODO: After implementing VST3, check if we handle parsing failures correctly pub fn from_string(&mut self, string: &str) -> bool { // TODO: Debug asserts on failures let value = match &self.string_to_value { Some(f) => f(string), // TODO: Check how Rust's parse function handles trailing garbage None => string.parse().ok(), }; match value { Some(unnormalized) => { self.value = unnormalized; true } None => false, } } /// Get the normalized `[0, 1]` value for this parameter. pub fn normalized_value(&self) -> f32 { self.range.normalize(self.value) } /// Set this parameter based on a normalized value. pub fn set_normalized_value(&mut self, normalized: f32) { self.value = self.range.unnormalize(normalized); } } }; } impl_plainparam!(FloatParam); impl_plainparam!(IntParam); impl Display for PlainParam { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match &self.value_to_string { Some(func) => write!(f, "{}{}", func(self.value), self.unit), None => write!(f, "{}{}", self.value, self.unit), } } } // TODO: Clamping impl NormalizebleRange for Range { fn normalize(&self, unnormalized: f32) -> f32 { match &self { Range::Linear { min, max } => (unnormalized - min) / (max - min), } } fn unnormalize(&self, normalized: f32) -> f32 { match &self { Range::Linear { min, max } => (normalized * (max - min)) + min, } } } impl NormalizebleRange for Range { fn normalize(&self, unnormalized: i32) -> f32 { match &self { Range::Linear { min, max } => (unnormalized - min) as f32 / (max - min) as f32, } } fn unnormalize(&self, normalized: f32) -> i32 { match &self { Range::Linear { min, max } => (normalized * (max - min) as f32) as i32 + min, } } } #[cfg(test)] mod tests { use super::*; fn make_linear_float_range() -> Range { Range::Linear { min: 10.0, max: 20.0, } } fn make_linear_int_range() -> Range { Range::Linear { min: -10, max: 10 } } #[test] fn range_normalize_linear_float() { let range = make_linear_float_range(); assert_eq!(range.normalize(17.5), 0.75); } #[test] fn range_normalize_linear_int() { let range = make_linear_int_range(); assert_eq!(range.normalize(-5), 0.25); } #[test] fn range_unnormalize_linear_float() { let range = make_linear_float_range(); assert_eq!(range.unnormalize(0.25), 12.5); } #[test] fn range_unnormalize_linear_int() { let range = make_linear_int_range(); assert_eq!(range.unnormalize(0.75), 5); } }