// Safety limiter: ear protection for the 21st century
// Copyright (C) 2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
use nih_plug::prelude::*;
use std::sync::Arc;
/// After reaching the threshold, it will take this many milliseconds under that threshold to fade
/// back to the normal signal. Peaking above the threshold again during this time resets this.
const MORSE_FADEOUT_MS: f32 = 2000.0;
/// The frequency of the sine wave used for the SOS signal.
const MORSE_FREQUENCY: f32 = 420.0;
struct SafetyLimiter {
params: Arc,
buffer_config: BufferConfig,
/// `MORSE_FADEOUT_MS` translated into samples.
morse_fadeout_samples_total: u32,
/// The number of samples into the fadeout.
morse_fadeout_samples_current: u32,
/// The phase of the Morse code sine oscillator. This runs from zero to `2 * pi` for
/// efficiency's sake.
osc_phase_tau: f32,
/// The phase increment for every sample. This can be precomputed since the frequency is fixed.
osc_phase_tau_dt: f32,
}
#[derive(Params)]
struct SafetyLimiterParams {
/// The level at which to start engaging the safety limiter. Stored as a gain ratio instead of
/// decibels.
#[id = "threshold"]
threshold_gain: FloatParam,
}
impl Default for SafetyLimiterParams {
fn default() -> Self {
Self {
threshold_gain: FloatParam::new(
"Threshold",
util::db_to_gain(0.00),
// This parameter mostly exists to allow small peaks through, so no need to go below
// 0 dBFS
FloatRange::Linear {
min: util::db_to_gain(0.0),
max: util::db_to_gain(12.0),
},
)
// And smoothing is not necessary here since we'll disable automation
.non_automatable()
.with_unit(" dB")
.with_value_to_string(formatters::v2s_f32_gain_to_db(2))
.with_string_to_value(formatters::s2v_f32_gain_to_db()),
}
}
}
impl Default for SafetyLimiter {
fn default() -> Self {
SafetyLimiter {
params: Arc::new(SafetyLimiterParams::default()),
buffer_config: BufferConfig {
sample_rate: 1.0,
min_buffer_size: None,
max_buffer_size: 0,
process_mode: ProcessMode::Realtime,
},
morse_fadeout_samples_total: 0,
morse_fadeout_samples_current: 0,
osc_phase_tau: 0.0,
osc_phase_tau_dt: 0.0,
}
}
}
impl Plugin for SafetyLimiter {
const NAME: &'static str = "Safety Limiter";
const VENDOR: &'static str = "Robbert van der Helm";
const URL: &'static str = "https://github.com/robbert-vdh/nih-plug";
const EMAIL: &'static str = "mail@robbertvanderhelm.nl";
const VERSION: &'static str = "0.1.0";
const DEFAULT_NUM_INPUTS: u32 = 2;
const DEFAULT_NUM_OUTPUTS: u32 = 2;
fn params(&self) -> Arc {
self.params.clone()
}
fn accepts_bus_config(&self, config: &BusConfig) -> bool {
config.num_input_channels == config.num_output_channels
}
fn initialize(
&mut self,
_bus_config: &BusConfig,
buffer_config: &BufferConfig,
_context: &mut impl ProcessContext,
) -> bool {
self.buffer_config = *buffer_config;
self.morse_fadeout_samples_total =
(MORSE_FADEOUT_MS / 1000.0 * buffer_config.sample_rate).round() as u32;
self.osc_phase_tau_dt = MORSE_FREQUENCY / buffer_config.sample_rate * std::f32::consts::TAU;
true
}
fn reset(&mut self) {
self.morse_fadeout_samples_current = 0;
self.reset_morse_signal();
}
fn process(
&mut self,
buffer: &mut Buffer,
_context: &mut impl ProcessContext,
) -> ProcessStatus {
// Don't do anything when bouncing
if self.buffer_config.process_mode == ProcessMode::Offline {
return ProcessStatus::Normal;
}
for mut channel_samples in buffer.iter_samples() {
let mut is_peaking = false;
for sample in channel_samples.iter_mut() {
is_peaking |= sample.abs() > self.params.threshold_gain.value;
}
// TODO: Do the morse code thing, right now this just fades to silence
if is_peaking {
// We'll continue playback where it was left off when this gets triggered before the
// fadeout has finished, but otherwise the sequence should be restarted.
if self.morse_fadeout_samples_current >= self.morse_fadeout_samples_total {
self.reset_morse_signal();
}
// This is the number of samples into the fadeout
self.morse_fadeout_samples_current = 0;
}
if self.morse_fadeout_samples_current < self.morse_fadeout_samples_total {
// This phase runs from 0 to `2 * pi` as an optimization, so we can use it directly.
// And the sine wave is scaled down to the threshold minus 12 dB
let sine_wave =
self.osc_phase_tau.sin() * (self.params.threshold_gain.value * 0.25);
self.osc_phase_tau += self.osc_phase_tau_dt;
if self.osc_phase_tau >= std::f32::consts::TAU {
self.osc_phase_tau -= std::f32::consts::TAU;
}
let original_t = (self.morse_fadeout_samples_current as f32
/ self.morse_fadeout_samples_total as f32)
.cbrt();
let morse_t = 1.0 - original_t;
for sample in channel_samples {
*sample = (sine_wave * morse_t) + (*sample * original_t);
}
self.morse_fadeout_samples_current += 1;
}
}
ProcessStatus::Normal
}
}
impl SafetyLimiter {
/// Reset the SOS signal to the start.
fn reset_morse_signal(&mut self) {
self.osc_phase_tau = 0.0;
}
}
impl ClapPlugin for SafetyLimiter {
const CLAP_ID: &'static str = "nl.robbertvanderhelm.safety-limiter";
const CLAP_DESCRIPTION: &'static str = "Plays SOS in Morse code when redlining";
const CLAP_FEATURES: &'static [&'static str] = &["audio_effect", "stereo", "utility"];
const CLAP_MANUAL_URL: &'static str = Self::URL;
const CLAP_SUPPORT_URL: &'static str = Self::URL;
}
impl Vst3Plugin for SafetyLimiter {
const VST3_CLASS_ID: [u8; 16] = *b"SafetyLimtrRvdH.";
const VST3_CATEGORIES: &'static str = "Fx|Tools";
}
nih_export_clap!(SafetyLimiter);
nih_export_vst3!(SafetyLimiter);