// Safety limiter: ear protection for the 21st century // Copyright (C) 2022 Robbert van der Helm // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use nih_plug::prelude::*; use std::sync::Arc; /// After reaching the threshold, it will take this many milliseconds under that threshold to fade /// back to the normal signal. Peaking above the threshold again during this time resets this. const MORSE_FADEOUT_MS: f32 = 2000.0; /// The frequency of the sine wave used for the SOS signal. const MORSE_FREQUENCY: f32 = 420.0; struct SafetyLimiter { params: Arc, buffer_config: BufferConfig, /// `MORSE_FADEOUT_MS` translated into samples. morse_fadeout_samples_total: u32, /// The number of samples into the fadeout. morse_fadeout_samples_current: u32, /// The phase of the Morse code sine oscillator. This runs from zero to `2 * pi` for /// efficiency's sake. osc_phase_tau: f32, /// The phase increment for every sample. This can be precomputed since the frequency is fixed. osc_phase_tau_dt: f32, } #[derive(Params)] struct SafetyLimiterParams { /// The level at which to start engaging the safety limiter. Stored as a gain ratio instead of /// decibels. #[id = "threshold"] threshold_gain: FloatParam, } impl Default for SafetyLimiterParams { fn default() -> Self { Self { threshold_gain: FloatParam::new( "Threshold", util::db_to_gain(0.00), // This parameter mostly exists to allow small peaks through, so no need to go below // 0 dBFS FloatRange::Linear { min: util::db_to_gain(0.0), max: util::db_to_gain(12.0), }, ) // And smoothing is not necessary here since we'll disable automation .non_automatable() .with_unit(" dB") .with_value_to_string(formatters::v2s_f32_gain_to_db(2)) .with_string_to_value(formatters::s2v_f32_gain_to_db()), } } } impl Default for SafetyLimiter { fn default() -> Self { SafetyLimiter { params: Arc::new(SafetyLimiterParams::default()), buffer_config: BufferConfig { sample_rate: 1.0, min_buffer_size: None, max_buffer_size: 0, process_mode: ProcessMode::Realtime, }, morse_fadeout_samples_total: 0, morse_fadeout_samples_current: 0, osc_phase_tau: 0.0, osc_phase_tau_dt: 0.0, } } } impl Plugin for SafetyLimiter { const NAME: &'static str = "Safety Limiter"; const VENDOR: &'static str = "Robbert van der Helm"; const URL: &'static str = "https://github.com/robbert-vdh/nih-plug"; const EMAIL: &'static str = "mail@robbertvanderhelm.nl"; const VERSION: &'static str = "0.1.0"; const DEFAULT_NUM_INPUTS: u32 = 2; const DEFAULT_NUM_OUTPUTS: u32 = 2; fn params(&self) -> Arc { self.params.clone() } fn accepts_bus_config(&self, config: &BusConfig) -> bool { config.num_input_channels == config.num_output_channels } fn initialize( &mut self, _bus_config: &BusConfig, buffer_config: &BufferConfig, _context: &mut impl ProcessContext, ) -> bool { self.buffer_config = *buffer_config; self.morse_fadeout_samples_total = (MORSE_FADEOUT_MS / 1000.0 * buffer_config.sample_rate).round() as u32; self.osc_phase_tau_dt = MORSE_FREQUENCY / buffer_config.sample_rate * std::f32::consts::TAU; true } fn reset(&mut self) { self.morse_fadeout_samples_current = 0; self.reset_morse_signal(); } fn process( &mut self, buffer: &mut Buffer, _context: &mut impl ProcessContext, ) -> ProcessStatus { // Don't do anything when bouncing if self.buffer_config.process_mode == ProcessMode::Offline { return ProcessStatus::Normal; } for mut channel_samples in buffer.iter_samples() { let mut is_peaking = false; for sample in channel_samples.iter_mut() { is_peaking |= sample.abs() > self.params.threshold_gain.value; } // TODO: Do the morse code thing, right now this just fades to silence if is_peaking { // We'll continue playback where it was left off when this gets triggered before the // fadeout has finished, but otherwise the sequence should be restarted. if self.morse_fadeout_samples_current >= self.morse_fadeout_samples_total { self.reset_morse_signal(); } // This is the number of samples into the fadeout self.morse_fadeout_samples_current = 0; } if self.morse_fadeout_samples_current < self.morse_fadeout_samples_total { // This phase runs from 0 to `2 * pi` as an optimization, so we can use it directly. // And the sine wave is scaled down to the threshold minus 12 dB let sine_wave = self.osc_phase_tau.sin() * (self.params.threshold_gain.value * 0.25); self.osc_phase_tau += self.osc_phase_tau_dt; if self.osc_phase_tau >= std::f32::consts::TAU { self.osc_phase_tau -= std::f32::consts::TAU; } let original_t = (self.morse_fadeout_samples_current as f32 / self.morse_fadeout_samples_total as f32) .cbrt(); let morse_t = 1.0 - original_t; for sample in channel_samples { *sample = (sine_wave * morse_t) + (*sample * original_t); } self.morse_fadeout_samples_current += 1; } } ProcessStatus::Normal } } impl SafetyLimiter { /// Reset the SOS signal to the start. fn reset_morse_signal(&mut self) { self.osc_phase_tau = 0.0; } } impl ClapPlugin for SafetyLimiter { const CLAP_ID: &'static str = "nl.robbertvanderhelm.safety-limiter"; const CLAP_DESCRIPTION: &'static str = "Plays SOS in Morse code when redlining"; const CLAP_FEATURES: &'static [&'static str] = &["audio_effect", "stereo", "utility"]; const CLAP_MANUAL_URL: &'static str = Self::URL; const CLAP_SUPPORT_URL: &'static str = Self::URL; } impl Vst3Plugin for SafetyLimiter { const VST3_CLASS_ID: [u8; 16] = *b"SafetyLimtrRvdH."; const VST3_CATEGORIES: &'static str = "Fx|Tools"; } nih_export_clap!(SafetyLimiter); nih_export_vst3!(SafetyLimiter);