use backtrace::Backtrace; use std::cmp; use std::fs::File; use std::marker::PhantomData; use std::os::raw::c_char; use std::sync::atomic::{AtomicBool, Ordering}; use crate::util::permit_alloc; /// The environment variable for controlling the logging behavior. const NIH_LOG_ENV: &str = "NIH_LOG"; /// The bit that controls flush-to-zero behavior for denormals in 32 and 64-bit floating point /// numbers on AArch64. /// /// #[cfg(target_arch = "aarch64")] const AARCH64_FTZ_BIT: u64 = 1 << 24; #[cfg(all(debug_assertions, feature = "assert_process_allocs"))] #[global_allocator] static A: assert_no_alloc::AllocDisabler = assert_no_alloc::AllocDisabler; /// A Rabin fingerprint based string hash for parameter ID strings. pub fn hash_param_id(id: &str) -> u32 { let mut hash: u32 = 0; for char in id.bytes() { hash = hash.wrapping_mul(31).wrapping_add(char as u32); } // In VST3 the last bit is reserved for parameters provided by the host // https://developer.steinberg.help/display/VST/Parameters+and+Automation hash &= !(1 << 31); hash } /// The equivalent of the `strlcpy()` C function. Copy `src` to `dest` as a null-terminated /// C-string. If `dest` does not have enough capacity, add a null terminator at the end to prevent /// buffer overflows. pub fn strlcpy(dest: &mut [c_char], src: &str) { if dest.is_empty() { return; } let src_bytes: &[u8] = src.as_bytes(); // NOTE: `c_char` is i8 on x86 based archs, and u8 on AArch64. There this line won't do // anything. let src_bytes_signed: &[c_char] = unsafe { &*(src_bytes as *const [u8] as *const [c_char]) }; // Make sure there's always room for a null terminator let copy_len = cmp::min(dest.len() - 1, src.len()); dest[..copy_len].copy_from_slice(&src_bytes_signed[..copy_len]); dest[copy_len] = 0; } /// Set up the logger so that the `nih_*!()` logging and assertion macros log output to a /// centralized location and panics also get written there. By default this logs to STDERR unless /// the user is running Windows and a debugger has been attached, in which case /// `OutputDebugString()` will be used instead. /// /// The logger's behavior can be controlled by setting the `NIH_LOG` environment variable to: /// /// - `stderr`, in which case the log output always gets written to STDERR. /// - `windbg` (only on Windows), in which case the output always gets logged using /// `OutputDebugString()`. /// - A file path, in which case the output gets appended to the end of that file which will be /// created if necessary. pub fn setup_logger() { // `win_dbg_logger` has no way to let us know that the logger has already been set up, so we'll // need to do it this way static LOGGER_SET_UP: AtomicBool = AtomicBool::new(false); if LOGGER_SET_UP .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) .is_err() { return; } let nih_log_env = std::env::var(NIH_LOG_ENV); let nih_log_env_str = nih_log_env.as_deref().unwrap_or(""); #[cfg(target_os = "windows")] if nih_log_env_str.eq_ignore_ascii_case("windbg") || win_dbg_logger::is_debugger_present() { win_dbg_logger::init(); log_panics::init(); return; } // If opening the file fails, then we'll log to STDERR anyways, hence this closure let log_level = if cfg!(debug_assertions) { simplelog::LevelFilter::Trace } else { simplelog::LevelFilter::Info }; let logger_config = simplelog::ConfigBuilder::new() .set_thread_mode(simplelog::ThreadLogMode::Both) .set_location_level(simplelog::LevelFilter::Debug) .build(); let init_stderr_logger = || { simplelog::TermLogger::init( log_level, logger_config.clone(), simplelog::TerminalMode::Stderr, simplelog::ColorChoice::Auto, ) }; // If the logger has already been set up outside of this function then that won't cause any // problems, so we can ignore the results here if nih_log_env_str.eq_ignore_ascii_case("stderr") || nih_log_env_str.is_empty() { let _ = init_stderr_logger(); } else { let file = File::options() .append(true) .create(true) .open(nih_log_env_str); match file { Ok(file) => { let _ = simplelog::WriteLogger::init(log_level, logger_config, file); } Err(err) => { let _ = init_stderr_logger(); nih_debug_assert_failure!("Could not open '{}': {:?}", nih_log_env_str, err); } } } // This is copied from same as the `log_panics` crate, but it's wrapped in `permit_alloc()`. // Otherwise logging panics will trigger `assert_no_alloc` as this also allocates. std::panic::set_hook(Box::new(|info| { permit_alloc(|| { // All of this is directly copied from `permit_no_alloc`, except that `error!()` became // `nih_error!()` and `Shim` has been inlined let backtrace = Backtrace::new(); let thread = std::thread::current(); let thread = thread.name().unwrap_or("unnamed"); let msg = match info.payload().downcast_ref::<&'static str>() { Some(s) => *s, None => match info.payload().downcast_ref::() { Some(s) => &**s, None => "Box", }, }; match info.location() { Some(location) => { nih_error!( target: "panic", "thread '{}' panicked at '{}': {}:{}\n{:?}", thread, msg, location.file(), location.line(), backtrace ); } None => { nih_error!( target: "panic", "thread '{}' panicked at '{}'\n{:?}", thread, msg, backtrace ) } } }) })); } /// A wrapper around the entire process function, including the plugin wrapper parts. This sets up /// `assert_no_alloc` if needed, while also making sure that things like FTZ are set up correctly if /// the host has not already done so. pub fn process_wrapper T>(f: F) -> T { // Make sure FTZ is always enabled, even if the host doesn't do it for us let _ftz_guard = ScopedFtz::enable(); cfg_if::cfg_if! { if #[cfg(all(debug_assertions, feature = "assert_process_allocs"))] { assert_no_alloc::assert_no_alloc(f) } else { f() } } } /// Enable the CPU's Flush To Zero flag while this object is in scope. If the flag was not already /// set, it will be restored to its old value when this gets dropped. struct ScopedFtz { /// Whether FTZ should be disabled again, i.e. if FTZ was not enabled before. should_disable_again: bool, /// We can't directly implement !Send and !Sync, but this will do the same thing. This object /// affects the current thread's floating point registers, so it may only be dropped on the /// current thread. _send_sync_marker: PhantomData<*const ()>, } impl ScopedFtz { fn enable() -> Self { cfg_if::cfg_if! { if #[cfg(target_feature = "sse")] { let mode = unsafe { std::arch::x86_64::_MM_GET_FLUSH_ZERO_MODE() }; let should_disable_again = mode != std::arch::x86_64::_MM_FLUSH_ZERO_ON; if should_disable_again { unsafe { std::arch::x86_64::_MM_SET_FLUSH_ZERO_MODE(std::arch::x86_64::_MM_FLUSH_ZERO_ON) }; } Self { should_disable_again, _send_sync_marker: PhantomData, } } else if #[cfg(target_arch = "aarch64")] { // There are no convient intrinsics to change the FTZ settings on AArch64, so this // requires inline assembly: // https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/FPCR--Floating-point-Control-Register let mut fpcr: u64; unsafe { std::arch::asm!("mrs {}, fpcr", out(reg) fpcr) }; let should_disable_again = fpcr & AARCH64_FTZ_BIT == 0; if should_disable_again { unsafe { std::arch::asm!("msr fpcr, {}", in(reg) fpcr | AARCH64_FTZ_BIT) }; } Self { should_disable_again, _send_sync_marker: PhantomData, } } else { Self { should_disable_again: false, _send_sync_marker: PhantomData, } } } } } impl Drop for ScopedFtz { fn drop(&mut self) { if self.should_disable_again { cfg_if::cfg_if! { if #[cfg(target_feature = "sse")] { unsafe { std::arch::x86_64::_MM_SET_FLUSH_ZERO_MODE(std::arch::x86_64::_MM_FLUSH_ZERO_OFF) }; } else if #[cfg(target_arch = "aarch64")] { let mut fpcr: u64; unsafe { std::arch::asm!("mrs {}, fpcr", out(reg) fpcr) }; unsafe { std::arch::asm!("msr fpcr, {}", in(reg) fpcr & !AARCH64_FTZ_BIT) }; } }; } } } #[cfg(test)] mod miri { use std::ffi::CStr; use super::*; #[test] fn strlcpy_normal() { let mut dest = [0; 256]; strlcpy(&mut dest, "Hello, world!"); assert_eq!( unsafe { CStr::from_ptr(dest.as_ptr()) }.to_str(), Ok("Hello, world!") ); } #[test] fn strlcpy_overflow() { let mut dest = [0; 6]; strlcpy(&mut dest, "Hello, world!"); assert_eq!( unsafe { CStr::from_ptr(dest.as_ptr()) }.to_str(), Ok("Hello") ); } }