//! Adapters and utilities for working with audio buffers. use std::marker::PhantomData; #[cfg(feature = "simd")] use std::simd::{LaneCount, Simd, SupportedLaneCount}; // TODO: Does adding `#[inline]` to the .next() functions make any difference? /// The audio buffers used during processing. This contains the output audio output buffers with the /// inputs already copied to the outputs. You can either use the iterator adapters to conveniently /// and efficiently iterate over the samples, or you can do your own thing using the raw audio /// buffers. #[derive(Default)] pub struct Buffer<'a> { /// Contains slices for the plugin's outputs. You can't directly create a nested slice form /// apointer to pointers, so this needs to be preallocated in the setup call and kept around /// between process calls. And because storing a reference to this means a) that you need a lot /// of lifetime annotations everywhere and b) that at some point you need unsound lifetime casts /// because this `Buffers` either cannot have the same lifetime as the separately stored output /// buffers, and it also cannot be stored in a field next to it because that would mean /// containing mutable references to data stored in a mutex. output_slices: Vec<&'a mut [f32]>, } // Per-sample per-channel iterators /// An iterator over all samples in the buffer, yielding iterators over each channel for every /// sample. This iteration order offers good cache locality for per-sample access. pub struct SamplesIter<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_sample: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } /// Can construct iterators over actual iterator over the channel data for a sample, yielded by /// [`SamplesIter`]. Can be turned into an iterator, or [`Channels::iter_mut()`] can be used to /// iterate over the channel data multiple times, or more efficiently you can use /// [`Channels::get_unchecked_mut()`] to do the same thing. pub struct Channels<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_sample: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } /// The actual iterator over the channel data for a sample, yielded by [`Channels`]. pub struct ChannelsIter<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_sample: usize, pub(self) current_channel: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } // Per-block per-channel per-sample iterators /// An iterator over all samples in the buffer, slicing over the sample-dimension with a maximum /// size of `max_block_size`. See [`Buffer::iter_blocks()`]. Yields both the block and the offset /// from the start of the buffer. pub struct BlocksIter<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) max_block_size: usize, pub(self) current_block_start: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } /// A block yielded by [`BlocksIter`]. Can be iterated over once or multiple times, and also /// supports direct access to the block's samples if needed. pub struct Block<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_block_start: usize, pub(self) current_block_end: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } /// An iterator over all channels in a block yielded by [`Block`]. Analogous to [`ChannelsIter`] but /// for blocks. pub struct BlockChannelsIter<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_block_start: usize, pub(self) current_block_end: usize, pub(self) current_channel: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } impl<'slice, 'sample> Iterator for SamplesIter<'slice, 'sample> { type Item = Channels<'slice, 'sample>; fn next(&mut self) -> Option { if self.current_sample < unsafe { (*self.buffers)[0].len() } { let channels = Channels { buffers: self.buffers, current_sample: self.current_sample, _marker: self._marker, }; self.current_sample += 1; Some(channels) } else { None } } fn size_hint(&self) -> (usize, Option) { let remaining = unsafe { (*self.buffers)[0].len() } - self.current_sample; (remaining, Some(remaining)) } } impl<'slice, 'sample> Iterator for BlockChannelsIter<'slice, 'sample> { type Item = &'sample mut [f32]; fn next(&mut self) -> Option { if self.current_channel < unsafe { (*self.buffers).len() } { // SAFETY: These bounds have already been checked // SAFETY: It is also not possible to have multiple mutable references to the same // sample at the same time let slice = unsafe { (*self.buffers) .get_unchecked_mut(self.current_channel) .get_unchecked_mut(self.current_block_start..self.current_block_end) }; self.current_channel += 1; Some(slice) } else { None } } fn size_hint(&self) -> (usize, Option) { let remaining = unsafe { (*self.buffers).len() } - self.current_channel; (remaining, Some(remaining)) } } impl<'slice, 'sample> Iterator for BlocksIter<'slice, 'sample> { type Item = (usize, Block<'slice, 'sample>); fn next(&mut self) -> Option { let buffer_len = unsafe { (*self.buffers)[0].len() }; if self.current_block_start < buffer_len { let current_block_start = self.current_block_start; let current_block_end = (self.current_block_start + self.max_block_size).min(buffer_len); let block = Block { buffers: self.buffers, current_block_start, current_block_end, _marker: self._marker, }; self.current_block_start += self.max_block_size; Some((current_block_start, block)) } else { None } } fn size_hint(&self) -> (usize, Option) { let remaining = ((unsafe { (*self.buffers)[0].len() } - self.current_block_start) as f32 / self.max_block_size as f32) .ceil() as usize; (remaining, Some(remaining)) } } impl<'slice, 'sample> Iterator for ChannelsIter<'slice, 'sample> { type Item = &'sample mut f32; fn next(&mut self) -> Option { if self.current_channel < unsafe { (*self.buffers).len() } { // SAFETY: These bounds have already been checked // SAFETY: It is also not possible to have multiple mutable references to the same // sample at the same time let sample = unsafe { (*self.buffers) .get_unchecked_mut(self.current_channel) .get_unchecked_mut(self.current_sample) }; self.current_channel += 1; Some(sample) } else { None } } fn size_hint(&self) -> (usize, Option) { let remaining = unsafe { (*self.buffers).len() } - self.current_channel; (remaining, Some(remaining)) } } impl<'slice, 'sample> IntoIterator for Channels<'slice, 'sample> { type Item = &'sample mut f32; type IntoIter = ChannelsIter<'slice, 'sample>; fn into_iter(self) -> Self::IntoIter { ChannelsIter { buffers: self.buffers, current_sample: self.current_sample, current_channel: 0, _marker: self._marker, } } } impl<'slice, 'sample> IntoIterator for Block<'slice, 'sample> { type Item = &'sample mut [f32]; type IntoIter = BlockChannelsIter<'slice, 'sample>; fn into_iter(self) -> Self::IntoIter { BlockChannelsIter { buffers: self.buffers, current_block_start: self.current_block_start, current_block_end: self.current_block_end, current_channel: 0, _marker: self._marker, } } } impl ExactSizeIterator for SamplesIter<'_, '_> {} impl ExactSizeIterator for ChannelsIter<'_, '_> {} impl ExactSizeIterator for BlocksIter<'_, '_> {} impl ExactSizeIterator for BlockChannelsIter<'_, '_> {} impl<'a> Buffer<'a> { /// Return the numer of samples in this buffer. pub fn len(&self) -> usize { if self.output_slices.is_empty() { 0 } else { self.output_slices[0].len() } } /// Returns true if this buffer does not contain any samples. pub fn is_empty(&self) -> bool { self.output_slices.is_empty() || self.output_slices[0].is_empty() } /// Obtain the raw audio buffers. pub fn as_slice(&mut self) -> &mut [&'a mut [f32]] { &mut self.output_slices } /// Iterate over the samples, returning a channel iterator for each sample. pub fn iter_mut<'slice>(&'slice mut self) -> SamplesIter<'slice, 'a> { SamplesIter { buffers: self.output_slices.as_mut_slice(), current_sample: 0, _marker: PhantomData, } } /// Iterate over the buffer in blocks with the specified maximum size. The ideal maximum block /// size depends on the plugin in question, but 64 or 128 samples works for most plugins. Since /// the buffer's total size may not be cleanly divisble by the maximum size, the returned /// buffers may have any size in `[1, max_block_size]`. This is useful when using algorithms /// that work on entire blocks of audio, like those that would otherwise need to perform /// expensive per-sample branching or that can use per-sample SIMD as opposed to per-channel /// SIMD. /// /// The parameter smoothers can also produce smoothed values for an entire block using /// [`Smoother::next_block()`][crate::prelude::Smoother::next_block()]. Before using this, you /// will need to call /// [`Plugin::initialize_block_smoothers()`][crate::prelude::Plugin::initialize_block_smoothers()] /// with the same `max_block_size` in your initialization function first. /// /// You can use this to obtain block-slices from a buffer so you can pass them to a library: /// /// ```ignore /// for block in buffer.iter_blocks(128) { /// let mut block_channels = block.into_iter(); /// let stereo_slice = &[ /// block_channels.next().unwrap(), /// block_channels.next().unwrap(), /// ]; /// /// // Do something cool with `stereo_slice` /// } /// ```` pub fn iter_blocks<'slice>(&'slice mut self, max_block_size: usize) -> BlocksIter<'slice, 'a> { BlocksIter { buffers: self.output_slices.as_mut_slice(), max_block_size, current_block_start: 0, _marker: PhantomData, } } /// Access the raw output slice vector. This needs to be resized to match the number of output /// channels during the plugin's initialization. Then during audio processing, these slices /// should be updated to point to the plugin's audio buffers. /// /// # Safety /// /// The stored slices must point to live data when this object is passed to the plugins' process /// function. The rest of this object also assumes all channel lengths are equal. Panics will /// likely occur if this is not the case. pub unsafe fn with_raw_vec(&mut self, update: impl FnOnce(&mut Vec<&'a mut [f32]>)) { update(&mut self.output_slices); } } impl<'slice, 'sample> Channels<'slice, 'sample> { /// Get the number of channels. #[allow(clippy::len_without_is_empty)] pub fn len(&self) -> usize { unsafe { (*self.buffers).len() } } /// A resetting iterator. This lets you iterate over the same channels multiple times. Otherwise /// you don't need to use this function as [`Channels`] already implements [Iterator]. pub fn iter_mut(&mut self) -> ChannelsIter<'slice, 'sample> { ChannelsIter { buffers: self.buffers, current_sample: self.current_sample, current_channel: 0, _marker: self._marker, } } /// Access a sample by index. Useful when you would otherwise iterate over this 'Channels' /// iterator multiple times. #[inline] pub fn get_mut(&mut self, channel_index: usize) -> Option<&mut f32> { // SAFETY: The sample bound has already been checked unsafe { Some( (*self.buffers) .get_mut(channel_index)? .get_unchecked_mut(self.current_sample), ) } } /// The same as [`get_mut()`][Self::get_mut()], but without any bounds checking. /// /// # Safety /// /// `channel_index` must be in the range `0..Self::len()`. #[inline] pub unsafe fn get_unchecked_mut(&mut self, channel_index: usize) -> &mut f32 { (*self.buffers) .get_unchecked_mut(channel_index) .get_unchecked_mut(self.current_sample) } /// Get a SIMD vector containing the channel data for this buffer. If `LANES > channels.len()` /// then this will be padded with zeroes. If `LANES < channels.len()` then this won't contain /// all values. #[cfg(feature = "simd")] #[inline] pub fn to_simd(&self) -> Simd where LaneCount: SupportedLaneCount, { let used_lanes = self.len().max(LANES); let mut values = [0.0; LANES]; for (channel_idx, value) in values.iter_mut().enumerate().take(used_lanes) { *value = unsafe { *(*self.buffers) .get_unchecked(channel_idx) .get_unchecked(self.current_sample) }; } Simd::from_array(values) } /// Get a SIMD vector containing the channel data for this buffer. Will always read exactly /// `LANES` channels. /// /// # Safety /// /// Undefined behavior if `LANES > channels.len()`. #[cfg(feature = "simd")] #[inline] pub unsafe fn to_simd_unchecked(&self) -> Simd where LaneCount: SupportedLaneCount, { let mut values = [0.0; LANES]; for (channel_idx, value) in values.iter_mut().enumerate() { *value = *(*self.buffers) .get_unchecked(channel_idx) .get_unchecked(self.current_sample); } Simd::from_array(values) } /// Write data from a SIMD vector to this sample's channel data. This takes the padding added by /// [`to_simd()`][Self::to_simd()] into account. #[cfg(feature = "simd")] #[allow(clippy::wrong_self_convention)] #[inline] pub fn from_simd(&mut self, vector: Simd) where LaneCount: SupportedLaneCount, { let used_lanes = self.len().max(LANES); let values = vector.to_array(); for (channel_idx, value) in values.into_iter().enumerate().take(used_lanes) { *unsafe { (*self.buffers) .get_unchecked_mut(channel_idx) .get_unchecked_mut(self.current_sample) } = value; } } /// Write data from a SIMD vector to this sample's channel data. This assumes `LANES` matches /// exactly with the number of channels in the buffer. /// /// # Safety /// /// Undefined behavior if `LANES > channels.len()`. #[cfg(feature = "simd")] #[allow(clippy::wrong_self_convention)] #[inline] pub unsafe fn from_simd_unchecked(&mut self, vector: Simd) where LaneCount: SupportedLaneCount, { let values = vector.to_array(); for (channel_idx, value) in values.into_iter().enumerate() { *(*self.buffers) .get_unchecked_mut(channel_idx) .get_unchecked_mut(self.current_sample) = value; } } } impl<'slice, 'sample> Block<'slice, 'sample> { /// Get the number of samples (not channels) in the block. #[allow(clippy::len_without_is_empty)] pub fn len(&self) -> usize { self.current_block_end - self.current_block_start } /// A resetting iterator. This lets you iterate over the same block multiple times. Otherwise /// you don't need to use this function as [`Block`] already implements [`Iterator`]. You can /// also use the direct accessor functions on this block instead. pub fn iter_mut(&mut self) -> BlockChannelsIter<'slice, 'sample> { BlockChannelsIter { buffers: self.buffers, current_block_start: self.current_block_start, current_block_end: self.current_block_end, current_channel: 0, _marker: self._marker, } } /// Access a channel by index. Useful when you would otherwise iterate over this [`Block`] /// multiple times. #[inline] pub fn get_mut(&mut self, channel_index: usize) -> Option<&mut [f32]> { // SAFETY: The block bound has already been checked unsafe { Some( (*self.buffers) .get_mut(channel_index)? .get_unchecked_mut(self.current_block_start..self.current_block_end), ) } } /// The same as [`get_mut()`][Self::get_mut], but without any bounds checking. /// /// # Safety /// /// `channel_index` must be in the range `0..Self::len()`. #[inline] pub unsafe fn get_unchecked_mut(&mut self, channel_index: usize) -> &mut [f32] { (*self.buffers) .get_unchecked_mut(channel_index) .get_unchecked_mut(self.current_block_start..self.current_block_end) } /// Get a SIMD vector containing the channel data for a specific sample in this block. If `LANES /// > channels.len()` then this will be padded with zeroes. If `LANES < channels.len()` then /// this won't contain all values. /// /// Returns a `None` value if `sample_index` is out of bounds. #[cfg(feature = "simd")] #[inline] pub fn to_channel_simd( &self, sample_index: usize, ) -> Option> where LaneCount: SupportedLaneCount, { if sample_index > self.len() { return None; } let used_lanes = self.len().max(LANES); let mut values = [0.0; LANES]; for (channel_idx, value) in values.iter_mut().enumerate().take(used_lanes) { *value = unsafe { *(*self.buffers) .get_unchecked(channel_idx) .get_unchecked(self.current_block_start + sample_index) }; } Some(Simd::from_array(values)) } /// Get a SIMD vector containing the channel data for a specific sample in this block. Will /// always read exactly `LANES` channels, and does not perform bounds checks on `sample_index`. /// /// # Safety /// /// Undefined behavior if `LANES > block.len()` or if `sample_index > block.len()`. #[cfg(feature = "simd")] #[inline] pub unsafe fn to_channel_simd_unchecked( &self, sample_index: usize, ) -> Simd where LaneCount: SupportedLaneCount, { let mut values = [0.0; LANES]; for (channel_idx, value) in values.iter_mut().enumerate() { *value = *(*self.buffers) .get_unchecked(channel_idx) .get_unchecked(self.current_block_start + sample_index); } Simd::from_array(values) } /// Write data from a SIMD vector to this sample's channel data for a specific sample in this /// block. This takes the padding added by [`to_simd()`][Self::to_simd()] into account. /// /// Returns `false` if `sample_index` is out of bounds. #[cfg(feature = "simd")] #[allow(clippy::wrong_self_convention)] #[inline] pub fn from_channel_simd( &mut self, sample_index: usize, vector: Simd, ) -> bool where LaneCount: SupportedLaneCount, { if sample_index > self.len() { return false; } let used_lanes = self.len().max(LANES); let values = vector.to_array(); for (channel_idx, value) in values.into_iter().enumerate().take(used_lanes) { *unsafe { (*self.buffers) .get_unchecked_mut(channel_idx) .get_unchecked_mut(self.current_block_start + sample_index) } = value; } true } /// Write data from a SIMD vector to this sample's channel data for a specific sample in this /// block.. This assumes `LANES` matches exactly with the number of channels in the buffer, and /// does not perform bounds checks on `sample_index`. /// /// # Safety /// /// Undefined behavior if `LANES > block.len()` or if `sample_index > block.len()`. #[cfg(feature = "simd")] #[allow(clippy::wrong_self_convention)] #[inline] pub unsafe fn from_channel_simd_unchecked( &mut self, sample_index: usize, vector: Simd, ) where LaneCount: SupportedLaneCount, { let values = vector.to_array(); for (channel_idx, value) in values.into_iter().enumerate() { *(*self.buffers) .get_unchecked_mut(channel_idx) .get_unchecked_mut(self.current_block_start + sample_index) = value; } } } #[cfg(any(miri, test))] mod miri { use super::*; #[test] fn repeated_access() { let mut real_buffers = vec![vec![0.0; 512]; 2]; let mut buffer = Buffer::default(); unsafe { buffer.with_raw_vec(|output_slices| { let (first_channel, other_channels) = real_buffers.split_at_mut(1); *output_slices = vec![&mut first_channel[0], &mut other_channels[0]]; }) }; for samples in buffer.iter_mut() { for sample in samples { *sample += 0.001; } } for mut samples in buffer.iter_mut() { for _ in 0..2 { for sample in samples.iter_mut() { *sample += 0.001; } } } assert_eq!(real_buffers[0][0], 0.003); } #[test] fn repeated_slices() { let mut real_buffers = vec![vec![0.0; 512]; 2]; let mut buffer = Buffer::default(); unsafe { buffer.with_raw_vec(|output_slices| { let (first_channel, other_channels) = real_buffers.split_at_mut(1); *output_slices = vec![&mut first_channel[0], &mut other_channels[0]]; }) }; // These iterators should not alias let mut blocks = buffer.iter_blocks(16); let (_block1_offset, block1) = blocks.next().unwrap(); let (_block2_offset, block2) = blocks.next().unwrap(); for channel in block1 { for sample in channel.iter_mut() { *sample += 0.001; } } for channel in block2 { for sample in channel.iter_mut() { *sample += 0.001; } } for i in 0..32 { assert_eq!(real_buffers[0][i], 0.001); } for i in 32..48 { assert_eq!(real_buffers[0][i], 0.0); } } }