// Spectral Compressor: an FFT based compressor // Copyright (C) 2021-2022 Robbert van der Helm // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use nih_plug::prelude::*; use realfft::num_complex::Complex32; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; use crate::SpectralCompressorParams; // These are the parameter ID prefixes used for the downwards and upwards cmpression parameters. const DOWNWARDS_NAME_PREFIX: &str = "downwards_"; const UPWARDS_NAME_PREFIX: &str = "upwards_"; /// The envelopes are initialized to the RMS value of a -24 dB sine wave to make sure extreme upwards /// compression doesn't cause pops when switching between window sizes and when deactivating and /// reactivating the plugin. const ENVELOPE_INIT_VALUE: f32 = std::f32::consts::FRAC_1_SQRT_2 / 8.0; /// The target frequency for the high frequency ratio rolloff. This is fixed to prevent Spectral /// Compressor from getting brighter as the sample rate increases. const HIGH_FREQ_RATIO_ROLLOFF_FREQUENCY: f32 = 22_050.0; /// A bank of compressors so each FFT bin can be compressed individually. The vectors in this struct /// will have a capacity of `MAX_WINDOW_SIZE / 2 + 1` and a size that matches the current complex /// FFT buffer size. This is stored as a struct of arrays to make SIMD-ing easier in the future. pub struct CompressorBank { /// If set, then the downwards thresholds should be updated on the next processing cycle. Can be /// set from a parameter value change listener, and is also set when calling `.reset_for_size`. pub should_update_downwards_thresholds: Arc, /// The same as `should_update_downwards_thresholds`, but for upwards thresholds. pub should_update_upwards_thresholds: Arc, /// If set, then the downwards ratios should be updated on the next processing cycle. Can be set /// from a parameter value change listener, and is also set when calling `.reset_for_size`. pub should_update_downwards_ratios: Arc, /// The same as `should_update_downwards_ratios`, but for upwards ratios. pub should_update_upwards_ratios: Arc, /// For each compressor bin, `log2(freq)` where `freq` is the frequency associated with that /// compressor. This is precomputed since all update functions need it. log2_freqs: Vec, /// Downwards compressor thresholds, in linear space. downwards_thresholds: Vec, /// The start (lower end) of the downwards's knee range, in linear space. This is calculated in /// decibel/log space and then converted to gain to keep everything in linear space. downwards_knee_starts: Vec, /// The end (upper end) of the downwards's knee range, in linear space. downwards_knee_ends: Vec, /// The reciprocals of the downwards compressor ratios. At 1.0 the cmopressor won't do anything. /// If [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the /// same for each compressor. We're doing the compression in linear space to avoid a logarithm, /// so the division by the ratio becomes an nth-root, or exponentation by the reciprocal of the /// ratio. downwards_ratio_recips: Vec, /// Upwards compressor thresholds, in linear space. upwards_thresholds: Vec, /// The start (lower end) of the upwards's knee range, in linear space. upwards_knee_starts: Vec, /// The end (upper end) of the upwards's knee range, in linear space. upwards_knee_ends: Vec, /// The same as `downwards_ratio_recipss`, but for the upwards compression. upwards_ratio_recips: Vec, /// The current envelope value for this bin, in linear space. Indexed by /// `[channel_idx][compressor_idx]`. envelopes: Vec>, /// When sidechaining is enabled, this contains the per-channel frqeuency spectrum magnitudes /// for the current block. The compressor thresholds and knee values are multiplied by these /// values to get the effective thresholds. sidechain_spectrum_magnitudes: Vec>, /// The window size this compressor bank was configured for. This is used to compute the /// coefficients for the envelope followers in the process function. window_size: usize, /// The sample rate this compressor bank was configured for. This is used to compute the /// coefficients for the envelope followers in the process function. sample_rate: f32, } #[derive(Params)] pub struct ThresholdParams { /// The compressor threshold at the center frequency. When sidechaining is enabled, the input /// signal is gained by the inverse of this value. This replaces the input gain in the original /// Spectral Compressor. In the polynomial below, this is the intercept. #[id = "tresh_global"] pub threshold_db: FloatParam, /// The center frqeuency for the target curve when sidechaining is not enabled. The curve is a /// polynomial `threshold_db + curve_slope*x + curve_curve*(x^2)` that evaluates to a decibel /// value, where `x = log2(center_frequency) - log2(bin_frequency)`. In other words, this is /// evaluated in the log/log domain for decibels and octaves. #[id = "thresh_center_freq"] pub center_frequency: FloatParam, /// The slope for the curve, in the log/log domain. See the polynomial above. #[id = "thresh_curve_slope"] pub curve_slope: FloatParam, /// The, uh, 'curve' for the curve, in the logarithmic domain. This is the third coefficient in /// the quadratic polynomial and controls the parabolic behavior. Positive values turn the curve /// into a v-shaped curve, while negative values attenuate everything outside of the center /// frequency. See the polynomial above. #[id = "thresh_curve_curve"] pub curve_curve: FloatParam, /// Controls the type of threshold that should be used. Check [`ThresholdMode`] for more /// information. #[id = "thresh_mode"] pub mode: EnumParam, /// A `[0, 1]` parameter that controls how much of the other channels should be mixed in when /// computing the channel gain value that is then multiplied with he thresholds and knee values /// to the the compression parameters when using the sidechain modes. #[id = "thresh_sc_link"] pub sc_channel_link: FloatParam, } /// The type of threshold to use. #[derive(Enum, Debug, PartialEq, Eq)] pub enum ThresholdMode { /// Configure the thresholds to offset pink noise. This means that the slope will receive an /// additional -3 dB/octave slope. #[id = "internal"] #[name = "Pink Noise"] Internal, /// Dynamically reconfigure the thresholds based on a sidechain input. The -3 dB/octave slope /// offset is not applied here so the curve stays true to the sidechain input at the default /// settings. This works by simply multiplying the sidechain gain levels with the precomputed /// threshold, knee start, and knee end values. The sidechain channel linking option determines /// how how much of the other channel values to mix in before multiplying the sidechain gain /// values with the thresholds. #[id = "sidechain"] #[name = "Sidechain Matching"] SidechainMatch, /// Compress the input signal based on the sidechain signal's activity. Can be used to /// spectrally duck the input, or to amplify parts of the input based on holes in the sidechain /// signal. #[id = "sidechain_compress"] #[name = "Sidechain Compression"] SidechainCompress, } /// Contains the compressor parameters for both the upwards and downwards compressor banks. #[derive(Params)] pub struct CompressorBankParams { #[nested = "upwards"] pub upwards: Arc, #[nested = "downwards"] pub downwards: Arc, } /// This struct contains the parameters for either the upward or downward compressors. The `Params` /// trait is implemented manually to avoid copy-pasting parameters for both types of compressor. /// Both versions will have a parameter ID and a parameter name prefix to distinguish them. pub struct CompressorParams { /// The prefix to use in the `.param_map()` function so the upwards and downwards compressors /// get unique parameter IDs. param_id_prefix: &'static str, /// The compression threshold relative to the target curve. pub threshold_offset_db: FloatParam, /// The compression ratio. At 1.0 the compressor is disengaged. pub ratio: FloatParam, /// A `[0, 1]` scaling factor that causes the compressors for the higher registers to have lower /// ratios than the compressors for the lower registers. The scaling is applied logarithmically /// rather than linearly over the compressors. If this is set to 1.0, then the ratios will be /// the same for every compressor. A value of 0.5 means that at /// `HIGH_FREQ_RATIO_ROLLOFF_FREQUENCY` Hz, the compression ratio will be 0.5 times that as the /// one at 0 Hz. pub high_freq_ratio_rolloff: FloatParam, /// The compression knee width, in decibels. pub knee_width_db: FloatParam, } unsafe impl Params for CompressorParams { fn param_map(&self) -> Vec<(String, ParamPtr, String)> { let prefix = self.param_id_prefix; vec![ ( format!("{prefix}threshold_offset"), self.threshold_offset_db.as_ptr(), // The parent `CompressorBankParams` struct will add the group here String::new(), ), (format!("{prefix}ratio"), self.ratio.as_ptr(), String::new()), ( format!("{prefix}high_freq_rolloff"), self.high_freq_ratio_rolloff.as_ptr(), String::new(), ), ( format!("{prefix}knee"), self.knee_width_db.as_ptr(), String::new(), ), ] } } impl ThresholdParams { /// Create a new [`ThresholdParams`] object. Changing any of the threshold parameters causes the /// passed compressor bank's thresholds to be updated. pub fn new(compressor_bank: &CompressorBank) -> Self { let should_update_downwards_thresholds = compressor_bank.should_update_downwards_thresholds.clone(); let should_update_upwards_thresholds = compressor_bank.should_update_upwards_thresholds.clone(); let set_update_both_thresholds = Arc::new(move |_| { should_update_downwards_thresholds.store(true, Ordering::SeqCst); should_update_upwards_thresholds.store(true, Ordering::SeqCst); }); ThresholdParams { threshold_db: FloatParam::new( "Global Threshold", -12.0, FloatRange::Linear { min: -100.0, max: 20.0, }, ) .with_callback(set_update_both_thresholds.clone()) .with_unit(" dB") .with_step_size(0.1), center_frequency: FloatParam::new( "Threshold Center", 420.0, FloatRange::Skewed { min: 20.0, max: 20_000.0, factor: FloatRange::skew_factor(-2.0), }, ) .with_callback(set_update_both_thresholds.clone()) // This includes the unit .with_value_to_string(formatters::v2s_f32_hz_then_khz(0)) .with_string_to_value(formatters::s2v_f32_hz_then_khz()), // These are polynomial coefficients that are evaluated in the log/log domain // (octaves/decibels). The global threshold is the intercept. curve_slope: FloatParam::new( "Threshold Slope", 0.0, FloatRange::SymmetricalSkewed { min: -36.0, max: 36.0, factor: FloatRange::skew_factor(-2.0), center: 0.0, }, ) .with_callback(set_update_both_thresholds.clone()) .with_unit(" dB/oct") .with_step_size(0.01), curve_curve: FloatParam::new( "Threshold Curve", 0.0, FloatRange::SymmetricalSkewed { min: -24.0, max: 24.0, factor: FloatRange::skew_factor(-2.0), center: 0.0, }, ) .with_callback(set_update_both_thresholds.clone()) .with_unit(" dB/oct²") .with_step_size(0.01), mode: EnumParam::new("Mode", ThresholdMode::Internal) // Not the most efficient way to do this, but it's a bit cleaner than the // alternative .with_callback(Arc::new(move |_| set_update_both_thresholds(0.0))), sc_channel_link: FloatParam::new( "SC Channel Link", 0.8, FloatRange::Linear { min: 0.0, max: 1.0 }, ) .with_unit("%") .with_value_to_string(formatters::v2s_f32_percentage(0)) .with_string_to_value(formatters::s2v_f32_percentage()), } } } impl CompressorBankParams { /// Create compressor bank parameter objects for both the downwards and upwards compressors of /// `compressor`. Changing the ratio and threshold parameters will cause the compressor to /// recompute its values on the next processing cycle. pub fn new(compressor: &CompressorBank) -> Self { CompressorBankParams { downwards: Arc::new(CompressorParams::new( DOWNWARDS_NAME_PREFIX, "Downwards", compressor.should_update_downwards_thresholds.clone(), compressor.should_update_downwards_ratios.clone(), )), upwards: Arc::new(CompressorParams::new( UPWARDS_NAME_PREFIX, "Upwards", compressor.should_update_upwards_thresholds.clone(), compressor.should_update_upwards_ratios.clone(), )), } } } impl CompressorParams { /// Create a new [`CompressorBankParams`] object with a prefix for all parameter names. Changing /// any of the threshold or ratio parameters causes the passed atomics to be updated. These /// should be taken from a [`CompressorBank`] so the parameters are linked to it. pub fn new( param_id_prefix: &'static str, name_prefix: &str, should_update_thresholds: Arc, should_update_ratios: Arc, ) -> Self { let set_update_thresholds = Arc::new(move |_| should_update_thresholds.store(true, Ordering::SeqCst)); let set_update_ratios = Arc::new(move |_| should_update_ratios.store(true, Ordering::SeqCst)); CompressorParams { param_id_prefix, // TODO: Set nicer default values for these things // As explained above, these offsets are relative to the target curve threshold_offset_db: FloatParam::new( format!("{name_prefix} Offset"), 0.0, FloatRange::Linear { min: -50.0, max: 50.0, }, ) .with_callback(set_update_thresholds) .with_unit(" dB") .with_step_size(0.1), ratio: FloatParam::new( format!("{name_prefix} Ratio"), 1.0, FloatRange::Skewed { min: 1.0, max: 500.0, factor: FloatRange::skew_factor(-2.0), }, ) .with_callback(set_update_ratios.clone()) .with_step_size(0.01) .with_value_to_string(formatters::v2s_compression_ratio(2)) .with_string_to_value(formatters::s2v_compression_ratio()), high_freq_ratio_rolloff: FloatParam::new( format!("{name_prefix} Hi-Freq Rolloff"), // TODO: Bit of a hacky way to set the default values differently for upwards and // downwards compressors if param_id_prefix == UPWARDS_NAME_PREFIX { 0.75 } else { // When used subtly, no rolloff is usually better for downwards compression 0.0 }, FloatRange::Linear { min: 0.0, max: 1.0 }, ) .with_callback(set_update_ratios) .with_unit("%") .with_value_to_string(formatters::v2s_f32_percentage(0)) .with_string_to_value(formatters::s2v_f32_percentage()), knee_width_db: FloatParam::new( format!("{name_prefix} Knee"), 6.0, FloatRange::Skewed { min: 0.0, max: 36.0, factor: FloatRange::skew_factor(-1.0), }, ) .with_unit(" dB") .with_step_size(0.1), } } } impl CompressorBank { /// Set up the compressor for the given channel count and maximum FFT window size. The /// compressors won't be initialized yet. pub fn new(num_channels: usize, max_window_size: usize) -> Self { let complex_buffer_len = max_window_size / 2 + 1; CompressorBank { should_update_downwards_thresholds: Arc::new(AtomicBool::new(true)), should_update_upwards_thresholds: Arc::new(AtomicBool::new(true)), should_update_downwards_ratios: Arc::new(AtomicBool::new(true)), should_update_upwards_ratios: Arc::new(AtomicBool::new(true)), log2_freqs: Vec::with_capacity(complex_buffer_len), downwards_thresholds: Vec::with_capacity(complex_buffer_len), downwards_knee_starts: Vec::with_capacity(complex_buffer_len), downwards_knee_ends: Vec::with_capacity(complex_buffer_len), downwards_ratio_recips: Vec::with_capacity(complex_buffer_len), upwards_thresholds: Vec::with_capacity(complex_buffer_len), upwards_knee_starts: Vec::with_capacity(complex_buffer_len), upwards_knee_ends: Vec::with_capacity(complex_buffer_len), upwards_ratio_recips: Vec::with_capacity(complex_buffer_len), envelopes: vec![Vec::with_capacity(complex_buffer_len); num_channels], sidechain_spectrum_magnitudes: vec![ Vec::with_capacity(complex_buffer_len); num_channels ], window_size: 0, sample_rate: 1.0, } } /// Change the capacities of the internal buffers to fit new parameters. Use the /// `.reset_for_size()` method to clear the buffers and set the current window size. pub fn update_capacity(&mut self, num_channels: usize, max_window_size: usize) { let complex_buffer_len = max_window_size / 2 + 1; self.log2_freqs .reserve_exact(complex_buffer_len.saturating_sub(self.log2_freqs.len())); self.downwards_thresholds .reserve_exact(complex_buffer_len.saturating_sub(self.downwards_thresholds.len())); self.downwards_ratio_recips .reserve_exact(complex_buffer_len.saturating_sub(self.downwards_ratio_recips.len())); self.downwards_knee_starts .reserve_exact(complex_buffer_len.saturating_sub(self.downwards_knee_starts.len())); self.downwards_knee_ends .reserve_exact(complex_buffer_len.saturating_sub(self.downwards_knee_ends.len())); self.upwards_thresholds .reserve_exact(complex_buffer_len.saturating_sub(self.upwards_thresholds.len())); self.upwards_ratio_recips .reserve_exact(complex_buffer_len.saturating_sub(self.upwards_ratio_recips.len())); self.upwards_knee_starts .reserve_exact(complex_buffer_len.saturating_sub(self.upwards_knee_starts.len())); self.upwards_knee_ends .reserve_exact(complex_buffer_len.saturating_sub(self.upwards_knee_ends.len())); self.envelopes.resize_with(num_channels, Vec::new); for envelopes in self.envelopes.iter_mut() { envelopes.reserve_exact(complex_buffer_len.saturating_sub(envelopes.len())); } self.sidechain_spectrum_magnitudes .resize_with(num_channels, Vec::new); for magnitudes in self.sidechain_spectrum_magnitudes.iter_mut() { magnitudes.reserve_exact(complex_buffer_len.saturating_sub(magnitudes.len())); } } /// Resize the number of compressors to match the current window size. Also precomputes the /// 2-log frequencies for each bin. /// /// If the window size is larger than the maximum window size, then this will allocate. pub fn resize(&mut self, buffer_config: &BufferConfig, window_size: usize) { let complex_buffer_len = window_size / 2 + 1; // These 2-log frequencies are needed when updating the compressor parameters, so we'll just // precompute them to avoid having to repeat the same expensive computations all the time self.log2_freqs.resize(complex_buffer_len, 0.0); // The first one should always stay at zero, `0.0f32.log2() == NaN`. for (i, log2_freq) in self.log2_freqs.iter_mut().enumerate().skip(1) { let freq = (i as f32 / window_size as f32) * buffer_config.sample_rate; *log2_freq = freq.log2(); } self.downwards_thresholds.resize(complex_buffer_len, 1.0); self.downwards_ratio_recips.resize(complex_buffer_len, 1.0); self.downwards_knee_starts.resize(complex_buffer_len, 1.0); self.downwards_knee_ends.resize(complex_buffer_len, 1.0); self.upwards_thresholds.resize(complex_buffer_len, 1.0); self.upwards_ratio_recips.resize(complex_buffer_len, 1.0); self.upwards_knee_starts.resize(complex_buffer_len, 1.0); self.upwards_knee_ends.resize(complex_buffer_len, 1.0); for envelopes in self.envelopes.iter_mut() { envelopes.resize(complex_buffer_len, ENVELOPE_INIT_VALUE); } for magnitudes in self.sidechain_spectrum_magnitudes.iter_mut() { magnitudes.resize(complex_buffer_len, 0.0); } self.window_size = window_size; self.sample_rate = buffer_config.sample_rate; // The compressors need to be updated on the next processing cycle self.should_update_downwards_thresholds .store(true, Ordering::SeqCst); self.should_update_upwards_thresholds .store(true, Ordering::SeqCst); self.should_update_downwards_ratios .store(true, Ordering::SeqCst); self.should_update_upwards_ratios .store(true, Ordering::SeqCst); } /// Clear out the envelope followers. pub fn reset(&mut self) { for envelopes in self.envelopes.iter_mut() { envelopes.fill(ENVELOPE_INIT_VALUE); } // Sidechain data doesn't need to be reset as it will be overwritten immediately before use } /// Apply the magnitude compression to a buffer of FFT bins. The compressors are first updated /// if needed. The overlap amount is needed to compute the effective sample rate. The /// `first_non_dc_bin` argument is used to avoid upwards compression on the DC bins, or the /// neighbouring bins the DC signal may have been convolved into because of the Hann window /// function. pub fn process( &mut self, buffer: &mut [Complex32], channel_idx: usize, params: &SpectralCompressorParams, overlap_times: usize, first_non_dc_bin: usize, ) { nih_debug_assert_eq!(buffer.len(), self.log2_freqs.len()); self.update_if_needed(params); match params.threshold.mode.value() { ThresholdMode::Internal => { self.update_envelopes(buffer, channel_idx, params, overlap_times); self.compress(buffer, channel_idx, params, first_non_dc_bin) } ThresholdMode::SidechainMatch => { self.update_envelopes(buffer, channel_idx, params, overlap_times); self.compress_sidechain_match(buffer, channel_idx, params, first_non_dc_bin) } ThresholdMode::SidechainCompress => { // This mode uses regular compression, but the envelopes are computed from the // sidechain input magnitudes. These are already set in `process_sidechain`. This // separate envelope updating function is needed for the channel linking. self.update_envelopes_sidechain(channel_idx, params, overlap_times); self.compress(buffer, channel_idx, params, first_non_dc_bin) } }; } /// Set the sidechain frequency spectrum magnitudes just before a [`process()`][Self::process()] /// call. These will be multiplied with the existing compressor thresholds and knee values to /// get the effective values for use with sidechaining. pub fn process_sidechain(&mut self, sc_buffer: &mut [Complex32], channel_idx: usize) { nih_debug_assert_eq!(sc_buffer.len(), self.log2_freqs.len()); self.update_sidechain_spectra(sc_buffer, channel_idx); } /// Update the envelope followers based on the bin magnetudes. fn update_envelopes( &mut self, buffer: &mut [Complex32], channel_idx: usize, params: &SpectralCompressorParams, overlap_times: usize, ) { // The coefficient the old envelope value is multiplied by when the current rectified sample // value is above the envelope's value. The 0 to 1 step response retains 36.8% of the old // value after the attack time has elapsed, and current value is 63.2% of the way towards 1. // The effective sample rate needs to compensate for the periodic nature of the STFT // operation. Since with a 2048 sample window and 4x overlap, you'd run this function once // for every 512 samples. let effective_sample_rate = self.sample_rate / (self.window_size as f32 / overlap_times as f32); let attack_old_t = if params.global.compressor_attack_ms.value() == 0.0 { 0.0 } else { (-1.0 / (params.global.compressor_attack_ms.value() / 1000.0 * effective_sample_rate)) .exp() }; let attack_new_t = 1.0 - attack_old_t; // The same as `attack_old_t`, but for the release phase of the envelope follower let release_old_t = if params.global.compressor_release_ms.value() == 0.0 { 0.0 } else { (-1.0 / (params.global.compressor_release_ms.value() / 1000.0 * effective_sample_rate)) .exp() }; let release_new_t = 1.0 - release_old_t; for (bin, envelope) in buffer.iter().zip(self.envelopes[channel_idx].iter_mut()) { let magnitude = bin.norm(); if *envelope > magnitude { // Release stage *envelope = (release_old_t * *envelope) + (release_new_t * magnitude); } else { // Attack stage *envelope = (attack_old_t * *envelope) + (attack_new_t * magnitude); } } } /// The same as [`update_envelopes()`][Self::update_envelopes()], but based on the previously /// set sidechain bin magnitudes. This allows for channel linking. /// [`process_sidechain()`][Self::process_sidechain()] needs to be called for all channels /// before this function can be used to set the magnitude spectra. fn update_envelopes_sidechain( &mut self, channel_idx: usize, params: &SpectralCompressorParams, overlap_times: usize, ) { // See `update_envelopes()` let effective_sample_rate = self.sample_rate / (self.window_size as f32 / overlap_times as f32); let attack_old_t = if params.global.compressor_attack_ms.value() == 0.0 { 0.0 } else { (-1.0 / (params.global.compressor_attack_ms.value() / 1000.0 * effective_sample_rate)) .exp() }; let attack_new_t = 1.0 - attack_old_t; let release_old_t = if params.global.compressor_release_ms.value() == 0.0 { 0.0 } else { (-1.0 / (params.global.compressor_release_ms.value() / 1000.0 * effective_sample_rate)) .exp() }; let release_new_t = 1.0 - release_old_t; // For the channel linking let num_channels = self.sidechain_spectrum_magnitudes.len() as f32; let other_channels_t = params.threshold.sc_channel_link.value() / num_channels; let this_channel_t = 1.0 - (other_channels_t * (num_channels - 1.0)); for (bin_idx, envelope) in self.envelopes[channel_idx].iter_mut().enumerate() { // In this mode the envelopes are set based on the sidechain signal, taking channel // linking into account let sidechain_magnitude: f32 = self .sidechain_spectrum_magnitudes .iter() .enumerate() .map(|(sidechain_channel_idx, magnitudes)| { let t = if sidechain_channel_idx == channel_idx { this_channel_t } else { other_channels_t }; unsafe { magnitudes.get_unchecked(bin_idx) * t } }) .sum::(); if *envelope > sidechain_magnitude { // Release stage *envelope = (release_old_t * *envelope) + (release_new_t * sidechain_magnitude); } else { // Attack stage *envelope = (attack_old_t * *envelope) + (attack_new_t * sidechain_magnitude); } } } /// Update the spectral data using the sidechain input fn update_sidechain_spectra(&mut self, sc_buffer: &mut [Complex32], channel_idx: usize) { nih_debug_assert!(channel_idx < self.sidechain_spectrum_magnitudes.len()); for (bin, magnitude) in sc_buffer .iter() .zip(self.sidechain_spectrum_magnitudes[channel_idx].iter_mut()) { *magnitude = bin.norm(); } } /// Actually do the thing. [`Self::update_envelopes()`] or /// [`Self::update_envelopes_sidechain()`] must have been called before calling this. /// /// # Panics /// /// Panics if the buffer does not have the same length as the one that was passed to the last /// `resize()` call. fn compress( &self, buffer: &mut [Complex32], channel_idx: usize, params: &SpectralCompressorParams, first_non_dc_bin: usize, ) { // Well I'm not sure at all why this scaling works, but it does. With higher knee // bandwidths, the middle values needs to be pushed more towards the post-knee threshold // than with lower knee values. These scaling factors are used as exponents. let downwards_knee_scaling_factor = compute_knee_scaling_factor(params.compressors.downwards.knee_width_db.value()); // Note the square root here, since the curve needs to go the other way for the upwards // version let upwards_knee_scaling_factor = compute_knee_scaling_factor(params.compressors.upwards.knee_width_db.value()).sqrt(); assert!(self.downwards_thresholds.len() == buffer.len()); assert!(self.downwards_ratio_recips.len() == buffer.len()); assert!(self.downwards_knee_starts.len() == buffer.len()); assert!(self.downwards_knee_ends.len() == buffer.len()); assert!(self.upwards_thresholds.len() == buffer.len()); assert!(self.upwards_ratio_recips.len() == buffer.len()); assert!(self.upwards_knee_starts.len() == buffer.len()); assert!(self.upwards_knee_ends.len() == buffer.len()); // NOTE: In the sidechain compression mode these envelopes are computed from the sidechain // signal instead of the main input for (bin_idx, (bin, envelope)) in buffer .iter_mut() .zip(self.envelopes[channel_idx].iter()) .enumerate() { // This works by computing a scaling factor, and then scaling the bin magnitudes by that. let mut scale = 1.0; // All compression happens in the linear domain to save a logarithm // SAFETY: These sizes were asserted above let downwards_threshold = unsafe { self.downwards_thresholds.get_unchecked(bin_idx) }; let downwards_ratio_recip = unsafe { self.downwards_ratio_recips.get_unchecked(bin_idx) }; let downwards_knee_start = unsafe { self.downwards_knee_starts.get_unchecked(bin_idx) }; let downwards_knee_end = unsafe { self.downwards_knee_ends.get_unchecked(bin_idx) }; if *downwards_ratio_recip != 1.0 { scale *= compress_downwards( *envelope, *downwards_threshold, *downwards_ratio_recip, *downwards_knee_start, *downwards_knee_end, downwards_knee_scaling_factor, ); } // Upwards compression should not happen when the signal is _too_ quiet as we'd only be // amplifying noise let upwards_threshold = unsafe { self.upwards_thresholds.get_unchecked(bin_idx) }; let upwards_ratio_recip = unsafe { self.upwards_ratio_recips.get_unchecked(bin_idx) }; let upwards_knee_start = unsafe { self.upwards_knee_starts.get_unchecked(bin_idx) }; let upwards_knee_end = unsafe { self.upwards_knee_ends.get_unchecked(bin_idx) }; if bin_idx >= first_non_dc_bin && *upwards_ratio_recip != 1.0 && *envelope > 1e-6 { scale *= compress_upwards( *envelope, *upwards_threshold, *upwards_ratio_recip, *upwards_knee_start, *upwards_knee_end, upwards_knee_scaling_factor, ); } *bin *= scale; } } /// The same as [`compress()`][Self::compress()], but multiplying the threshold and knee values /// with the sidechain gains. /// /// # Panics /// /// Panics if the buffer does not have the same length as the one that was passed to the last /// `resize()` call. fn compress_sidechain_match( &self, buffer: &mut [Complex32], channel_idx: usize, params: &SpectralCompressorParams, first_non_dc_bin: usize, ) { // See `compress` for more details let downwards_knee_scaling_factor = compute_knee_scaling_factor(params.compressors.downwards.knee_width_db.value()); let upwards_knee_scaling_factor = compute_knee_scaling_factor(params.compressors.upwards.knee_width_db.value()).sqrt(); // For the channel linking let num_channels = self.sidechain_spectrum_magnitudes.len() as f32; let other_channels_t = params.threshold.sc_channel_link.value() / num_channels; let this_channel_t = 1.0 - (other_channels_t * (num_channels - 1.0)); assert!(self.sidechain_spectrum_magnitudes[channel_idx].len() == buffer.len()); assert!(self.downwards_thresholds.len() == buffer.len()); assert!(self.downwards_ratio_recips.len() == buffer.len()); assert!(self.downwards_knee_starts.len() == buffer.len()); assert!(self.downwards_knee_ends.len() == buffer.len()); assert!(self.upwards_thresholds.len() == buffer.len()); assert!(self.upwards_ratio_recips.len() == buffer.len()); assert!(self.upwards_knee_starts.len() == buffer.len()); assert!(self.upwards_knee_ends.len() == buffer.len()); for (bin_idx, (bin, envelope)) in buffer .iter_mut() .zip(self.envelopes[channel_idx].iter()) .enumerate() { // The idea here is that we scale the compressor thresholds/knee values by the sidechain // signal, thus sort of creating a dynamic multiband compressor let sidechain_scale: f32 = self .sidechain_spectrum_magnitudes .iter() .enumerate() .map(|(sidechain_channel_idx, magnitudes)| { let t = if sidechain_channel_idx == channel_idx { this_channel_t } else { other_channels_t }; unsafe { magnitudes.get_unchecked(bin_idx) * t } }) .sum::() // The thresholds may never reach zero as they are used in divisions .max(f32::EPSILON); let mut scale = 1.0; // Notice how the threshold and knee values are scaled here let downwards_threshold = unsafe { self.downwards_thresholds.get_unchecked(bin_idx) * sidechain_scale }; let downwards_ratio_recip = unsafe { self.downwards_ratio_recips.get_unchecked(bin_idx) }; let downwards_knee_start = unsafe { self.downwards_knee_starts.get_unchecked(bin_idx) * sidechain_scale }; let downwards_knee_end = unsafe { self.downwards_knee_ends.get_unchecked(bin_idx) * sidechain_scale }; if *downwards_ratio_recip != 1.0 { scale *= compress_downwards( *envelope, downwards_threshold, *downwards_ratio_recip, downwards_knee_start, downwards_knee_end, downwards_knee_scaling_factor, ); } let upwards_threshold = unsafe { self.upwards_thresholds.get_unchecked(bin_idx) * sidechain_scale }; let upwards_ratio_recip = unsafe { self.upwards_ratio_recips.get_unchecked(bin_idx) }; let upwards_knee_start = unsafe { self.upwards_knee_starts.get_unchecked(bin_idx) * sidechain_scale }; let upwards_knee_end = unsafe { self.upwards_knee_ends.get_unchecked(bin_idx) * sidechain_scale }; if bin_idx >= first_non_dc_bin && *upwards_ratio_recip != 1.0 && *envelope > 1e-6 { scale *= compress_upwards( *envelope, upwards_threshold, *upwards_ratio_recip, upwards_knee_start, upwards_knee_end, upwards_knee_scaling_factor, ); } *bin *= scale; } } /// Update the compressors if needed. This is called just before processing, and the compressors /// are updated in accordance to the atomic flags set on this struct. fn update_if_needed(&mut self, params: &SpectralCompressorParams) { // The threshold curve is a polynomial in log-log (decibels-octaves) space. The reuslt from // evaluating this needs to be converted to linear gain for the compressors. let intercept = params.threshold.threshold_db.value(); // The cheeky 3 additional dB/octave attenuation is to match pink noise with the default // settings. When using sidechaining we explicitly don't want this because the curve should // be a flat offset to the sidechain input at the default settings. let slope = match params.threshold.mode.value() { ThresholdMode::Internal => params.threshold.curve_slope.value() - 3.0, ThresholdMode::SidechainMatch | ThresholdMode::SidechainCompress => { params.threshold.curve_slope.value() } }; let curve = params.threshold.curve_curve.value(); let log2_center_freq = params.threshold.center_frequency.value().log2(); let downwards_high_freq_ratio_rolloff = params.compressors.downwards.high_freq_ratio_rolloff.value(); let upwards_high_freq_ratio_rolloff = params.compressors.upwards.high_freq_ratio_rolloff.value(); if self .should_update_downwards_thresholds .compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst) .is_ok() { let intercept = intercept + params.compressors.downwards.threshold_offset_db.value(); for ((log2_freq, threshold), (knee_start, knee_end)) in self .log2_freqs .iter() .zip(self.downwards_thresholds.iter_mut()) .zip( self.downwards_knee_starts .iter_mut() .zip(self.downwards_knee_ends.iter_mut()), ) { let offset = log2_freq - log2_center_freq; let threshold_db = intercept + (slope * offset) + (curve * offset * offset); let knee_start_db = threshold_db - (params.compressors.downwards.knee_width_db.value() / 2.0); let knee_end_db = threshold_db + (params.compressors.downwards.knee_width_db.value() / 2.0); // This threshold must never reach zero as it's used in divisions to get a gain ratio // above the threshold *threshold = util::db_to_gain(threshold_db).max(f32::EPSILON); *knee_start = util::db_to_gain(knee_start_db).max(f32::EPSILON); *knee_end = util::db_to_gain(knee_end_db).max(f32::EPSILON); } } if self .should_update_upwards_thresholds .compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst) .is_ok() { let intercept = intercept + params.compressors.upwards.threshold_offset_db.value(); for ((log2_freq, threshold), (knee_start, knee_end)) in self .log2_freqs .iter() .zip(self.upwards_thresholds.iter_mut()) .zip( self.upwards_knee_starts .iter_mut() .zip(self.upwards_knee_ends.iter_mut()), ) { let offset = log2_freq - log2_center_freq; let threshold_db = intercept + (slope * offset) + (curve * offset * offset); let knee_start_db = threshold_db - (params.compressors.upwards.knee_width_db.value() / 2.0); let knee_end_db = threshold_db + (params.compressors.upwards.knee_width_db.value() / 2.0); *threshold = util::db_to_gain(threshold_db).max(f32::EPSILON); *knee_start = util::db_to_gain(knee_start_db).max(f32::EPSILON); *knee_end = util::db_to_gain(knee_end_db).max(f32::EPSILON); } } if self .should_update_downwards_ratios .compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst) .is_ok() { // If the high-frequency rolloff is enabled then higher frequency bins will have their // ratios reduced to reduce harshness. This follows the octave scale. let target_ratio_recip = params.compressors.downwards.ratio.value().recip(); if downwards_high_freq_ratio_rolloff == 0.0 { self.downwards_ratio_recips.fill(target_ratio_recip); } else { for (log2_freq, ratio) in self .log2_freqs .iter() .zip(self.downwards_ratio_recips.iter_mut()) { let octave_fraction = log2_freq / HIGH_FREQ_RATIO_ROLLOFF_FREQUENCY; let rolloff_t = octave_fraction * downwards_high_freq_ratio_rolloff; // If the octave fraction times the rolloff amount is high, then this should get // closer to `high_freq_ratio_rolloff` (which is in [0, 1]). *ratio = (target_ratio_recip * (1.0 - rolloff_t)) + rolloff_t; } } } if self .should_update_upwards_ratios .compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst) .is_ok() { let target_ratio_recip = params.compressors.upwards.ratio.value().recip(); if upwards_high_freq_ratio_rolloff == 0.0 { self.upwards_ratio_recips.fill(target_ratio_recip); } else { for (log2_freq, ratio) in self .log2_freqs .iter() .zip(self.upwards_ratio_recips.iter_mut()) { let octave_fraction = log2_freq / HIGH_FREQ_RATIO_ROLLOFF_FREQUENCY; let rolloff_t = octave_fraction * upwards_high_freq_ratio_rolloff; *ratio = (target_ratio_recip * (1.0 - rolloff_t)) + rolloff_t; } } } } } /// Get the knee scaling factor for converting a linear `[0, 1]` knee range into the correct curve /// for the soft knee. This is used to blend between compression at the knee start to compression at /// the actual threshold. For upwards compression this needs an additional square root. fn compute_knee_scaling_factor(downwards_knee_width_db: f32) -> f32 { ((downwards_knee_width_db * 2.0) + 2.0).log2() - 1.0 } /// Get the compression scaling factor for downwards compression with the supplied parameters. The /// input signal can be multiplied by this factor to get the compressed output signal. All /// parameters are linear gain values. fn compress_downwards( envelope: f32, threshold: f32, ratio_recip: f32, knee_start: f32, knee_end: f32, knee_scaling_factor: f32, ) -> f32 { // The soft-knee option will fade in the compression curve when reaching the knee // start until it mtaches the hard-knee curve at the knee-end if envelope >= knee_end { // Because we're working in the linear domain, we care about the ratio between // the threshold and the envelope's current value. And log-space division // becomes linear-space exponentiation by the reciprocal, or taking the nth // root. let threshold_ratio = envelope / threshold; threshold_ratio.powf(ratio_recip) / threshold_ratio } else if envelope >= knee_start { // When the knee width is set to 0 dB, `downwards_knee_start == // downwards_knee_end` and this branch is never hit let linear_knee_width = knee_end - knee_start; let raw_knee_t = (envelope - knee_start) / linear_knee_width; nih_debug_assert!((0.0..=1.0).contains(&raw_knee_t)); // TODO: Apart from a small discontinuety in the derivative/slope at the start // of the knee this equation does exactly what you'd expect it to, but it // feels a bit weird. Should probably look for a cleaner way to calculate // this soft knee in linear-space at some point. let knee_t = (1.0 - raw_knee_t).powf(knee_scaling_factor); nih_debug_assert!((0.0..=1.0).contains(&knee_t)); // We'll linearly interpolate between compression at the knee start and at the // actual threshold based on `knee_t` let knee_ratio = envelope / knee_start; let threshold_ratio = envelope / threshold; (knee_t * (knee_ratio.powf(ratio_recip) / knee_ratio)) + ((1.0 - knee_t) * (threshold_ratio.powf(ratio_recip) / threshold_ratio)) } else { 1.0 } } /// Get the compression scaling factor for upwards compression with the supplied parameters. The /// input signal can be multiplied by this factor to get the compressed output signal. All /// parameters are linear gain values. fn compress_upwards( envelope: f32, threshold: f32, ratio_recip: f32, knee_start: f32, knee_end: f32, knee_scaling_factor: f32, ) -> f32 { // This goes the other way around compared to the downwards compression if envelope <= knee_start { // Notice how these ratios are reversed here let threshold_ratio = threshold / envelope; threshold_ratio / threshold_ratio.powf(ratio_recip) } else if envelope <= knee_end { // When the knee width is set to 0 dB, `upwards_knee_start == upwards_knee_end` // and this branch is never hit let linear_knee_width = knee_end - knee_start; let raw_knee_t = (envelope - knee_start) / linear_knee_width; nih_debug_assert!((0.0..=1.0).contains(&raw_knee_t)); // TODO: Some note the downwards version let knee_t = (1.0 - raw_knee_t).powf(knee_scaling_factor); nih_debug_assert!((0.0..=1.0).contains(&knee_t)); // The ratios are again inverted here compared to the downwards version let knee_ratio = knee_start / envelope; let threshold_ratio = threshold / envelope; (knee_t * (knee_ratio / knee_ratio.powf(ratio_recip))) + ((1.0 - knee_t) * (threshold_ratio / threshold_ratio.powf(ratio_recip))) } else { 1.0 } }