// Crisp: a distortion plugin but not quite // Copyright (C) 2022 Robbert van der Helm // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use nih_plug::prelude::*; use nih_plug_vizia::ViziaState; use pcg::Pcg32iState; use std::sync::Arc; mod editor; mod filter; mod pcg; /// The number of channels we support. Hardcoded to allow for easier SIMD-ifying in the future. const NUM_CHANNELS: u32 = 2; /// The number of channels to iterate over at a time. const BLOCK_SIZE: usize = 64; /// These seeds being fixed makes bouncing deterministic. const INITIAL_PRNG_SEED: Pcg32iState = Pcg32iState::new(69, 420); /// Allow 100% amount to scale the gain to a bit above 100%, to make the effect even less subtle. const AMOUNT_GAIN_MULTIPLIER: f32 = 2.0; const MIN_FILTER_FREQUENCY: f32 = 5.0; const MAX_FILTER_FREQUENCY: f32 = 22_000.0; /// This plugin essentially layers the sound with another copy of the signal ring modulated with /// white (or filtered) noise. That other copy of the sound may have a low-pass filter applied to it /// since this effect just turns into literal noise at high frequencies. struct Crisp { params: Arc, editor_state: Arc, /// Needed for computing the filter coefficients. sample_rate: f32, /// A PRNG for generating noise, after that we'll implement PCG ourselves so we can easily /// SIMD-ify this in the future. prng: Pcg32iState, /// Resonant filters for low passing the input signal before RM'ing, to allow this to work with /// inputs that already contain a lot of high freuqency content. rm_input_lpf: [filter::Biquad; NUM_CHANNELS as usize], /// Resonant filters for high- and then low- passing the noise signal, to make it even brighter. noise_hpf: [filter::Biquad; NUM_CHANNELS as usize], noise_lpf: [filter::Biquad; NUM_CHANNELS as usize], } #[derive(Params)] struct CrispParams { /// On a range of `[0, 1]`, how much of the modulated sound to mix in. #[id = "amount"] amount: FloatParam, /// What kind of RM to apply. The preset this was modelled after whether intentional or not only /// RMs the positive part of the waveform. #[id = "mode"] mode: EnumParam, /// How to handle stereo signals. See [`StereoMode`]. #[id = "stereo"] stereo_mode: EnumParam, /// The cutoff frequency for the low-pass filter applied to the input before RM'ing. #[id = "rmlpff"] rm_input_lpf_freq: FloatParam, /// The Q frequency for the low-pass filter applied to the input before RM'ing. #[id = "rmlpfq"] rm_input_lpf_q: FloatParam, /// The cutoff frequency for the high-pass filter applied to the noise. #[id = "nzhpff"] noise_hpf_freq: FloatParam, /// The Q parameter for the high pass-filter applied to the noise. #[id = "nzhpfq"] noise_hpf_q: FloatParam, /// The cutoff frequency for the low-pass filter applied to the noise. #[id = "nzlpff"] noise_lpf_freq: FloatParam, /// The Q parameter for the low pass-filter applied to the noise. #[id = "nzlpfq"] noise_lpf_q: FloatParam, /// Output gain, as voltage gain. Displayed in decibels. #[id = "output"] output_gain: FloatParam, /// If set, only output the RM'ed signal. Can be useful for further processing. #[id = "wtonly"] wet_only: BoolParam, } /// Controls the type of modulation to apply. #[derive(Enum, Debug, PartialEq)] enum Mode { /// RM the entire waveform. #[id = "soggy"] Soggy, /// RM only the positive part of the waveform. #[id = "crispy"] Crispy, /// RM only the negative part of the waveform. #[id = "crispy-negated"] #[name = "Crispy (alt)"] CrispyNegated, } /// Controls how to handle stereo input. #[derive(Enum, Debug, PartialEq)] enum StereoMode { /// Use the same noise for both channels. #[id = "mono"] Mono, /// Use a different noise source per channel. #[id = "stereo"] Stereo, } impl Default for Crisp { fn default() -> Self { Self { params: Arc::new(CrispParams::default()), editor_state: editor::default_state(), sample_rate: 1.0, prng: INITIAL_PRNG_SEED, rm_input_lpf: [filter::Biquad::default(); NUM_CHANNELS as usize], noise_hpf: [filter::Biquad::default(); NUM_CHANNELS as usize], noise_lpf: [filter::Biquad::default(); NUM_CHANNELS as usize], } } } impl Default for CrispParams { #[allow(clippy::derivable_impls)] fn default() -> Self { let f32_hz_then_khz = formatters::v2s_f32_hz_then_khz(0); let from_f32_hz_then_khz = formatters::s2v_f32_hz_then_khz(); Self { amount: FloatParam::new("Amount", 0.35, FloatRange::Linear { min: 0.0, max: 1.0 }) .with_smoother(SmoothingStyle::Linear(10.0)) .with_unit("%") .with_value_to_string(formatters::v2s_f32_percentage(0)) .with_string_to_value(formatters::s2v_f32_percentage()), mode: EnumParam::new("Mode", Mode::Crispy), stereo_mode: EnumParam::new("Stereo Mode", StereoMode::Stereo), rm_input_lpf_freq: FloatParam::new( "RM LP Frequency", MAX_FILTER_FREQUENCY, FloatRange::Skewed { min: MIN_FILTER_FREQUENCY, max: MAX_FILTER_FREQUENCY, factor: FloatRange::skew_factor(-1.0), }, ) .with_smoother(SmoothingStyle::Logarithmic(100.0)) // The unit is baked into the value so we can show the disabled string .with_value_to_string(Arc::new(|value| { if value >= MAX_FILTER_FREQUENCY { String::from("Disabled") } else { format!("{:.0} Hz", value) } })) .with_string_to_value(Arc::new(|string| { if string == "Disabled" { Some(MAX_FILTER_FREQUENCY) } else { string.trim().trim_end_matches(" Hz").parse().ok() } })), rm_input_lpf_q: FloatParam::new( "RM LP Resonance", 2.0f32.sqrt() / 2.0, FloatRange::Skewed { min: 2.0f32.sqrt() / 2.0, max: 10.0, factor: FloatRange::skew_factor(-1.0), }, ) .with_smoother(SmoothingStyle::Logarithmic(100.0)) .with_value_to_string(formatters::v2s_f32_rounded(2)), noise_hpf_freq: FloatParam::new( "Noise HP Frequency", MIN_FILTER_FREQUENCY, FloatRange::Skewed { min: MIN_FILTER_FREQUENCY, max: MAX_FILTER_FREQUENCY, factor: FloatRange::skew_factor(-1.0), }, ) .with_smoother(SmoothingStyle::Logarithmic(100.0)) // The unit is baked into the value so we can show the disabled string .with_value_to_string({ let f32_hz_then_khz = f32_hz_then_khz.clone(); Arc::new(move |value| { if value <= MIN_FILTER_FREQUENCY { String::from("Disabled") } else { f32_hz_then_khz(value) } }) }) .with_string_to_value({ let from_f32_hz_then_khz = from_f32_hz_then_khz.clone(); Arc::new(move |string| { if string == "Disabled" { Some(MIN_FILTER_FREQUENCY) } else { from_f32_hz_then_khz(string) } }) }), noise_hpf_q: FloatParam::new( "Noise HP Resonance", 2.0f32.sqrt() / 2.0, FloatRange::Skewed { min: 2.0f32.sqrt() / 2.0, max: 10.0, factor: FloatRange::skew_factor(-1.0), }, ) .with_smoother(SmoothingStyle::Logarithmic(100.0)) .with_value_to_string(formatters::v2s_f32_rounded(2)), noise_lpf_freq: FloatParam::new( "Noise LP Frequency", MAX_FILTER_FREQUENCY, FloatRange::Skewed { min: MIN_FILTER_FREQUENCY, max: MAX_FILTER_FREQUENCY, factor: FloatRange::skew_factor(-1.0), }, ) .with_smoother(SmoothingStyle::Logarithmic(100.0)) // The unit is baked into the value so we can show the disabled string .with_value_to_string(Arc::new(move |value| { if value >= MAX_FILTER_FREQUENCY { String::from("Disabled") } else { f32_hz_then_khz(value) } })) .with_string_to_value(Arc::new(move |string| { if string == "Disabled" { Some(MAX_FILTER_FREQUENCY) } else { from_f32_hz_then_khz(string) } })), noise_lpf_q: FloatParam::new( "Noise LP Resonance", 2.0f32.sqrt() / 2.0, FloatRange::Skewed { min: 2.0f32.sqrt() / 2.0, max: 10.0, factor: FloatRange::skew_factor(-1.0), }, ) .with_smoother(SmoothingStyle::Logarithmic(100.0)) .with_value_to_string(formatters::v2s_f32_rounded(2)), output_gain: FloatParam::new( "Output", 1.0, // Because we're representing gain as decibels the range is already logarithmic FloatRange::Linear { min: util::db_to_gain(-24.0), max: util::db_to_gain(0.0), }, ) .with_smoother(SmoothingStyle::Logarithmic(10.0)) .with_unit(" dB") .with_value_to_string(formatters::v2s_f32_gain_to_db(2)) .with_string_to_value(formatters::s2v_f32_gain_to_db()), wet_only: BoolParam::new("Wet Only", false), } } } impl Plugin for Crisp { const NAME: &'static str = "Crisp"; const VENDOR: &'static str = "Robbert van der Helm"; const URL: &'static str = "https://github.com/robbert-vdh/nih-plug"; const EMAIL: &'static str = "mail@robbertvanderhelm.nl"; const VERSION: &'static str = "0.1.0"; const DEFAULT_NUM_INPUTS: u32 = NUM_CHANNELS; const DEFAULT_NUM_OUTPUTS: u32 = NUM_CHANNELS; const SAMPLE_ACCURATE_AUTOMATION: bool = true; fn params(&self) -> Arc { self.params.clone() } fn editor(&self) -> Option> { editor::create(self.params.clone(), self.editor_state.clone()) } fn accepts_bus_config(&self, config: &BusConfig) -> bool { // We'll add a SIMD version in a bit which only supports stereo config.num_input_channels == config.num_output_channels && config.num_input_channels == NUM_CHANNELS } fn initialize( &mut self, bus_config: &BusConfig, buffer_config: &BufferConfig, _context: &mut impl InitContext, ) -> bool { nih_debug_assert_eq!(bus_config.num_input_channels, NUM_CHANNELS); nih_debug_assert_eq!(bus_config.num_output_channels, NUM_CHANNELS); self.sample_rate = buffer_config.sample_rate; true } fn reset(&mut self) { // By using the same seeds each time bouncing can be made deterministic self.prng = INITIAL_PRNG_SEED; for filter in &mut self.rm_input_lpf { filter.reset(); } for filter in &mut self.noise_hpf { filter.reset(); } for filter in &mut self.noise_lpf { filter.reset(); } } fn process( &mut self, buffer: &mut Buffer, _aux: &mut AuxiliaryBuffers, _context: &mut impl ProcessContext, ) -> ProcessStatus { for (_, mut block) in buffer.iter_blocks(BLOCK_SIZE) { let mut rm_outputs = [[0.0; NUM_CHANNELS as usize]; BLOCK_SIZE]; // Reduce per-sample branching a bit by iterating over smaller blocks and only then // deciding what to do with the output. This version branches only once per sample (in // `do_ring_mod()`) which can be trivially optimized to a masked min/max later. // TODO: SIMD-ize this to process both channels at once match self.params.stereo_mode.value() { StereoMode::Mono => { for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) { let amount = self.params.amount.smoothed.next() * AMOUNT_GAIN_MULTIPLIER; // Controls the pre-RM LPF and the HPF applied to the noise signal self.maybe_update_filters(); let noise = self.gen_noise(0); for (channel_idx, (sample, rm_output)) in channel_samples.into_iter().zip(rm_outputs).enumerate() { *rm_output = self.do_ring_mod(*sample, channel_idx, noise) * amount; } } } StereoMode::Stereo => { for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) { let amount = self.params.amount.smoothed.next() * AMOUNT_GAIN_MULTIPLIER; self.maybe_update_filters(); for (channel_idx, (sample, rm_output)) in channel_samples.into_iter().zip(rm_outputs).enumerate() { let noise = self.gen_noise(channel_idx); *rm_output = self.do_ring_mod(*sample, channel_idx, noise) * amount; } } } } if self.params.wet_only.value { for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) { let output_gain = self.params.output_gain.smoothed.next(); for (sample, rm_output) in channel_samples.into_iter().zip(rm_outputs) { *sample = *rm_output * output_gain; } } } else { for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) { let output_gain = self.params.output_gain.smoothed.next(); for (sample, rm_output) in channel_samples.into_iter().zip(rm_outputs) { *sample = (*sample + *rm_output) * output_gain; } } } } ProcessStatus::Normal } } impl Crisp { /// Generate a new noise sample with the high pass filter applied. fn gen_noise(&mut self, channel: usize) -> f32 { let noise = self.prng.next_f32() * 2.0 - 1.0; let high_passed = self.noise_hpf[channel].process(noise); self.noise_lpf[channel].process(high_passed) } /// Perform the RM step depending on the mode. This applies a low pass filter to the input /// before RM'ing. fn do_ring_mod(&mut self, sample: f32, channel_idx: usize, noise: f32) -> f32 { let sample = self.rm_input_lpf[channel_idx].process(sample); // TODO: Avoid branching in the main loop, this just makes it a bit easier to prototype match self.params.mode.value() { Mode::Soggy => sample * noise, Mode::Crispy => sample.max(0.0) * noise, Mode::CrispyNegated => sample.max(0.0) * noise, } } /// Update the filter coefficients if needed. Should be called once per sample. fn maybe_update_filters(&mut self) { if self.params.rm_input_lpf_freq.smoothed.is_smoothing() || self.params.rm_input_lpf_q.smoothed.is_smoothing() { self.update_rm_input_lpf(); } if self.params.noise_hpf_freq.smoothed.is_smoothing() || self.params.noise_hpf_q.smoothed.is_smoothing() { self.update_noise_hpf(); } if self.params.noise_lpf_freq.smoothed.is_smoothing() || self.params.noise_lpf_q.smoothed.is_smoothing() { self.update_noise_lpf(); } } /// Update the filter coefficients if needed. Should be called explicitly from `initialize()`. fn update_rm_input_lpf(&mut self) { let frequency = self.params.rm_input_lpf_freq.smoothed.next(); let q = self.params.rm_input_lpf_q.smoothed.next(); let coefficients = filter::BiquadCoefficients::lowpass(self.sample_rate, frequency, q); for filter in &mut self.rm_input_lpf { filter.coefficients = coefficients; } } /// Update the filter coefficients if needed. Should be called explicitly from `initialize()`. fn update_noise_hpf(&mut self) { let frequency = self.params.noise_hpf_freq.smoothed.next(); let q = self.params.noise_hpf_q.smoothed.next(); let coefficients = filter::BiquadCoefficients::highpass(self.sample_rate, frequency, q); for filter in &mut self.noise_hpf { filter.coefficients = coefficients; } } /// Update the filter coefficients if needed. Should be called explicitly from `initialize()`. fn update_noise_lpf(&mut self) { let frequency = self.params.noise_lpf_freq.smoothed.next(); let q = self.params.noise_lpf_q.smoothed.next(); let coefficients = filter::BiquadCoefficients::lowpass(self.sample_rate, frequency, q); for filter in &mut self.noise_lpf { filter.coefficients = coefficients; } } } impl ClapPlugin for Crisp { const CLAP_ID: &'static str = "nl.robbertvanderhelm.crisp"; const CLAP_DESCRIPTION: &'static str = "Adds a bright crispy top end to low bass sounds"; const CLAP_FEATURES: &'static [ClapFeature] = &[ ClapFeature::AudioEffect, ClapFeature::Stereo, ClapFeature::Mono, ClapFeature::Distortion, ]; const CLAP_MANUAL_URL: &'static str = Self::URL; const CLAP_SUPPORT_URL: &'static str = Self::URL; } impl Vst3Plugin for Crisp { const VST3_CLASS_ID: [u8; 16] = *b"CrispPluginRvdH."; const VST3_CATEGORIES: &'static str = "Fx|Filter|Distortion"; } nih_export_clap!(Crisp); nih_export_vst3!(Crisp);