// Spectral Compressor: an FFT based compressor
// Copyright (C) 2021-2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
use nih_plug::prelude::*;
use nih_plug_vizia::ViziaState;
use realfft::num_complex::Complex32;
use realfft::{ComplexToReal, RealFftPlanner, RealToComplex};
use std::sync::Arc;
mod compressor_bank;
mod dry_wet_mixer;
mod editor;
const MIN_WINDOW_ORDER: usize = 6;
#[allow(dead_code)]
const MIN_WINDOW_SIZE: usize = 1 << MIN_WINDOW_ORDER; // 64
const DEFAULT_WINDOW_ORDER: usize = 12;
#[allow(dead_code)]
const DEFAULT_WINDOW_SIZE: usize = 1 << DEFAULT_WINDOW_ORDER; // 4096
const MAX_WINDOW_ORDER: usize = 15;
const MAX_WINDOW_SIZE: usize = 1 << MAX_WINDOW_ORDER; // 32768
const MIN_OVERLAP_ORDER: usize = 2;
#[allow(dead_code)]
const MIN_OVERLAP_TIMES: usize = 2 << MIN_OVERLAP_ORDER; // 4
const DEFAULT_OVERLAP_ORDER: usize = 3;
#[allow(dead_code)]
const DEFAULT_OVERLAP_TIMES: usize = 1 << DEFAULT_OVERLAP_ORDER; // 4
const MAX_OVERLAP_ORDER: usize = 5;
#[allow(dead_code)]
const MAX_OVERLAP_TIMES: usize = 1 << MAX_OVERLAP_ORDER; // 32
/// This is a port of .
struct SpectralCompressor {
params: Arc,
editor_state: Arc,
/// An adapter that performs most of the overlap-add algorithm for us.
stft: util::StftHelper,
/// Contains a Hann window function of the current window length, passed to the overlap-add
/// helper. Allocated with a `MAX_WINDOW_SIZE` initial capacity.
window_function: Vec,
/// A mixer to mix the dry signal back into the processed signal with latency compensation.
dry_wet_mixer: dry_wet_mixer::DryWetMixer,
/// The algorithms for the FFT and IFFT operations, for each supported order so we can switch
/// between them without replanning or allocations. Initialized during `initialize()`.
plan_for_order: Option<[Plan; MAX_WINDOW_ORDER - MIN_WINDOW_ORDER + 1]>,
/// The output of our real->complex FFT.
complex_fft_buffer: Vec,
}
/// An FFT plan for a specific window size, all of which will be precomputed during initilaization.
struct Plan {
/// The algorithm for the FFT operation.
r2c_plan: Arc>,
/// The algorithm for the IFFT operation.
c2r_plan: Arc>,
}
#[derive(Params)]
struct SpectralCompressorParams {
/// Makeup gain applied after the IDFT in the STFT process. If automatic makeup gain is enabled,
/// then this acts as an offset on top of that.
#[id = "output_db"]
output_gain_db: FloatParam,
// TODO: Bring this back, and with values that make more sense
// /// Try to automatically compensate for gain differences with different input gain, threshold, and ratio values.
// #[id = "auto_makeup"]
// auto_makeup_gain: BoolParam,
/// How much of the dry signal to mix in with the processed signal. The mixing is done after
/// applying the output gain. In other words, the dry signal is not gained in any way.
#[id = "dry_wet"]
dry_wet_ratio: FloatParam,
/// Sets the 0-20 Hz bin to 0 since this won't have a lot of semantic meaning anymore after this
/// plugin and it will thus just eat up headroom.
#[id = "dc_filter"]
dc_filter: BoolParam,
/// Parameters controlling the compressor thresholds and curves.
#[nested = "threhold"]
threhold: compressor_bank::ThresholdParams,
/// Parameters for the compressor bank.
#[nested = "compressors"]
compressors: compressor_bank::CompressorBankParams,
}
impl Default for SpectralCompressor {
fn default() -> Self {
Self {
params: Arc::new(SpectralCompressorParams::default()),
editor_state: editor::default_state(),
// These three will be set to the correct values in the initialize function
stft: util::StftHelper::new(Self::DEFAULT_NUM_OUTPUTS as usize, MAX_WINDOW_SIZE, 0),
window_function: Vec::with_capacity(MAX_WINDOW_SIZE),
dry_wet_mixer: dry_wet_mixer::DryWetMixer::new(0, 0, 0),
// This is initialized later since we don't want to do non-trivial computations before
// the plugin is initialized
plan_for_order: None,
complex_fft_buffer: Vec::with_capacity(MAX_WINDOW_SIZE / 2 + 1),
}
}
}
impl Default for SpectralCompressorParams {
fn default() -> Self {
Self {
// TODO: Do still enable per-block smoothing for these settings, because why not
// We don't need any smoothing for these parameters as the overlap-add process will
// already act as a form of smoothing
output_gain_db: FloatParam::new(
"Output Gain",
0.0,
FloatRange::Linear {
min: -50.0,
max: 50.0,
},
)
.with_unit(" dB")
.with_step_size(0.1),
// auto_makeup_gain: BoolParam::new("Auto Makeup Gain", true),
dry_wet_ratio: FloatParam::new("Mix", 1.0, FloatRange::Linear { min: 0.0, max: 1.0 })
.with_unit("%")
.with_smoother(SmoothingStyle::Linear(15.0))
.with_value_to_string(formatters::v2s_f32_percentage(0))
.with_string_to_value(formatters::s2v_f32_percentage()),
dc_filter: BoolParam::new("DC Filter", true),
threhold: compressor_bank::ThresholdParams::default(),
compressors: compressor_bank::CompressorBankParams::default(),
}
}
}
impl Plugin for SpectralCompressor {
const NAME: &'static str = "Spectral Compressor";
const VENDOR: &'static str = "Robbert van der Helm";
const URL: &'static str = "https://github.com/robbert-vdh/nih-plug";
const EMAIL: &'static str = "mail@robbertvanderhelm.nl";
const VERSION: &'static str = "0.2.0";
const DEFAULT_NUM_INPUTS: u32 = 2;
const DEFAULT_NUM_OUTPUTS: u32 = 2;
const SAMPLE_ACCURATE_AUTOMATION: bool = true;
fn params(&self) -> Arc {
self.params.clone()
}
fn editor(&self) -> Option> {
editor::create(self.params.clone(), self.editor_state.clone())
}
fn accepts_bus_config(&self, config: &BusConfig) -> bool {
// We can support any channel layout
config.num_input_channels == config.num_output_channels && config.num_input_channels > 0
}
fn initialize(
&mut self,
bus_config: &BusConfig,
buffer_config: &BufferConfig,
context: &mut impl InitContext,
) -> bool {
// This plugin can accept any number of channels, so we need to resize channel-dependent
// data structures accordinly
if self.stft.num_channels() != bus_config.num_output_channels as usize {
self.stft = util::StftHelper::new(self.stft.num_channels(), MAX_WINDOW_SIZE, 0);
}
self.dry_wet_mixer.resize(
bus_config.num_output_channels as usize,
buffer_config.max_buffer_size as usize,
MAX_WINDOW_SIZE,
);
// Planning with RustFFT is very fast, but it will still allocate we we'll plan all of the
// FFTs we might need in advance
if self.plan_for_order.is_none() {
let mut planner = RealFftPlanner::new();
let plan_for_order: Vec = (MIN_WINDOW_ORDER..=MAX_WINDOW_ORDER)
.map(|order| Plan {
r2c_plan: planner.plan_fft_forward(1 << order),
c2r_plan: planner.plan_fft_inverse(1 << order),
})
.collect();
self.plan_for_order = Some(
plan_for_order
.try_into()
.unwrap_or_else(|_| panic!("Mismatched plan orders")),
);
}
// TODO: Fetch from a parameter
let window_size = DEFAULT_WINDOW_SIZE;
self.resize_for_window(window_size);
context.set_latency_samples(self.stft.latency_samples());
true
}
fn reset(&mut self) {
self.dry_wet_mixer.reset();
}
fn process(
&mut self,
buffer: &mut Buffer,
_aux: &mut AuxiliaryBuffers,
context: &mut impl ProcessContext,
) -> ProcessStatus {
// If the window size has changed since the last process call, reset the buffers and chance
// our latency. All of these buffers already have enough capacity so this won't allocate.
// TODO: Fetch from a parameter
let overlap_times = DEFAULT_OVERLAP_TIMES;
// TODO: Fetch from a parameter
let window_size = DEFAULT_WINDOW_SIZE;
if self.window_function.len() != window_size {
self.resize_for_window(window_size);
context.set_latency_samples(self.stft.latency_samples());
}
// These plans have already been made during initialization we can switch between versions
// without reallocating
let fft_plan = &mut self.plan_for_order.as_mut().unwrap()
// FIXME: Use the parameter
// [self.params.window_size_order.value as usize - MIN_WINDOW_ORDER];
[DEFAULT_WINDOW_ORDER - MIN_WINDOW_ORDER];
let num_bins = self.complex_fft_buffer.len();
let sample_rate = context.transport().sample_rate;
// The overlap gain compensation is based on a squared Hann window, which will sum perfectly
// at four times overlap or higher. We'll apply a regular Hann window before the analysis
// and after the synthesis.
let gain_compensation: f32 =
((overlap_times as f32 / 4.0) * 1.5).recip() / window_size as f32;
// We'll apply the square root of the total gain compensation at the DFT and the IDFT
// stages. That way the compressor threshold values make much more sense. This version of
// Spectral Compressor does not have in input gain option and instead has the curve
// threshold option. When sidechaining is enabled this is used to gain up the sidechain
// signal instead.
let input_gain = gain_compensation.sqrt();
let output_gain =
util::db_to_gain(self.params.output_gain_db.value) * gain_compensation.sqrt();
// TODO: Auto makeup gain
// This is mixed in later with latency compensation applied
self.dry_wet_mixer.write_dry(buffer);
self.stft
.process_overlap_add(buffer, overlap_times, |_channel_idx, real_fft_buffer| {
// We'll window the input with a Hann function to avoid spectral leakage. The input
// gain here also contains a compensation factor for the forward FFT to make the
// compressor thresholds make more sense.
for (sample, window_sample) in real_fft_buffer.iter_mut().zip(&self.window_function)
{
*sample *= window_sample * input_gain;
}
// RustFFT doesn't actually need a scratch buffer here, so we'll pass an empty
// buffer instead
fft_plan
.r2c_plan
.process_with_scratch(real_fft_buffer, &mut self.complex_fft_buffer, &mut [])
.unwrap();
// TODO: Do the thing
// The DC and other low frequency bins doesn't contain much semantic meaning anymore
// after all of this, so it only ends up consuming headroom.
if self.params.dc_filter.value {
// The Hann window function spreads the DC signal out slightly, so we'll clear
// all 0-20 Hz bins for this.
let highest_dcish_bin_idx =
(20.0 / ((sample_rate / 2.0) / num_bins as f32)).floor() as usize;
self.complex_fft_buffer[..highest_dcish_bin_idx + 1].fill(Complex32::default());
}
// Inverse FFT back into the scratch buffer. This will be added to a ring buffer
// which gets written back to the host at a one block delay.
fft_plan
.c2r_plan
.process_with_scratch(&mut self.complex_fft_buffer, real_fft_buffer, &mut [])
.unwrap();
// Apply the window function once more to reduce time domain aliasing. The gain
// compensation compensates for the squared Hann window that would be applied if we
// didn't do any processing at all as well as the FFT+IFFT itself.
for (sample, window_sample) in real_fft_buffer.iter_mut().zip(&self.window_function)
{
*sample *= window_sample * output_gain;
}
});
self.dry_wet_mixer.mix_in_dry(
buffer,
self.params
.dry_wet_ratio
.smoothed
.next_step(buffer.len() as u32),
// The dry and wet signals are in phase, so we can do a linear mix
dry_wet_mixer::MixingStyle::Linear,
self.stft.latency_samples() as usize,
);
ProcessStatus::Normal
}
}
impl SpectralCompressor {
/// `window_size` should not exceed `MAX_WINDOW_SIZE` or this will allocate.
fn resize_for_window(&mut self, window_size: usize) {
// The FFT algorithms for this window size have already been planned in
// `self.plan_for_order`, and all of these data structures already have enough capacity, so
// we just need to change some sizes.
self.stft.set_block_size(window_size);
self.window_function.resize(window_size, 0.0);
util::window::hann_in_place(&mut self.window_function);
self.complex_fft_buffer
.resize(window_size / 2 + 1, Complex32::default());
}
}
impl ClapPlugin for SpectralCompressor {
const CLAP_ID: &'static str = "nl.robbertvanderhelm.spectral-compressor";
const CLAP_DESCRIPTION: Option<&'static str> = Some("Turn things into pink noise on demand");
const CLAP_MANUAL_URL: Option<&'static str> = Some(Self::URL);
const CLAP_SUPPORT_URL: Option<&'static str> = None;
const CLAP_FEATURES: &'static [ClapFeature] = &[
ClapFeature::AudioEffect,
ClapFeature::Stereo,
ClapFeature::PhaseVocoder,
ClapFeature::Compressor,
ClapFeature::Custom("spectral"),
ClapFeature::Custom("sosig"),
];
}
impl Vst3Plugin for SpectralCompressor {
const VST3_CLASS_ID: [u8; 16] = *b"SpectrlComprRvdH";
const VST3_CATEGORIES: &'static str = "Fx|Dynamics|Spectral";
}
nih_export_clap!(SpectralCompressor);
nih_export_vst3!(SpectralCompressor);