// Safety limiter: ear protection for the 21st century // Copyright (C) 2022 Robbert van der Helm // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use nih_plug::prelude::*; use std::sync::Arc; /// After reaching the threshold, it will take this many milliseconds under that threshold to start /// fading back to the normal signal. Peaking above the threshold again during this time resets /// this. The fadeout doesn't start immediately since that would add some nasty distortion when most /// but not all samples pass the threshold. const MORSE_FADEOUT_START_MS: f32 = 500.0; /// The Morse fadeout ends after this many milliseconds. const MORSE_FADEOUT_END_MS: f32 = MORSE_FADEOUT_START_MS + 1500.0; /// The frequency of the sine wave used for the SOS signal. const MORSE_FREQUENCY: f32 = 420.0; /// The four second SOS morse code sequence. Each element here represents an edge where the signal /// is either turned on or off. The first element of each tuple is the time in milliseconds into the /// sequence, while the second element is the new gate status at that time point. The last element /// acts as a delay before wrapping around, and it is equivalent to the 0 position in the next cycle /// (hence why it is set to true). const MORSE_SEQ_EDGES_MS: [(u32, bool); 19] = [ // S, 3*100 ms + 2*100ms spacing (0, true), (100, false), (200, true), (300, false), (400, true), // 500 ms silence (500, false), // // O, 3*200 ms + 2*100ms spacing (1000, true), (1200, false), (1400, true), (1600, false), (1800, true), // 500 ms silence (2000, false), // // S, 3*100 ms + 2*100ms spacing (2500, true), (2600, false), (2700, true), (2800, false), (2900, true), // 1000 ms silence (3000, false), // Acts as a delay at the end before the sequence loops. This sample 4000 behaves like an alias // for sample 0 in the next cycle. (4000, true), ]; struct SafetyLimiter { params: Arc, buffer_config: BufferConfig, /// `MORSE_FADEOUT_START_MS` translated into samples. morse_fadeout_samples_start: u32, /// `MORSE_FADEOUT_END_MS` translated into samples. morse_fadeout_samples_end: u32, /// `MORSE_SEQ_EDGES_MS` translated into samples. morse_seq_edges_samples: [(u32, bool); 19], /// The number of samples into the fadeout. This resets back to 0 whenever the signal peaks /// above the threshold. morse_fadeout_samples_current: u32, /// The index of the current step into `morse_seq_edges_samples`. This wraps around to zero when /// reaching the end of the sequence. This is only reset once the fadeout is fully finished. morse_seq_current_step_idx: usize, /// The index of the current sample in the morse code qeuence. This wraps around to zero when /// reaching the end of the sequence. This is only reset once the fadeout is fully finished. morse_seq_current_sample_idx: u32, /// The phase of the Morse code sine oscillator. This runs from zero to `2 * pi` for /// efficiency's sake. osc_phase_tau: f32, /// The phase increment for every sample. This can be precomputed since the frequency is fixed. osc_phase_tau_dt: f32, } #[derive(Params)] struct SafetyLimiterParams { /// The level at which to start engaging the safety limiter. Stored as a gain ratio instead of /// decibels. #[id = "threshold"] threshold_gain: FloatParam, } impl Default for SafetyLimiterParams { fn default() -> Self { Self { threshold_gain: FloatParam::new( "Threshold", util::db_to_gain(0.00), // This parameter mostly exists to allow small peaks through, so no need to go below // 0 dBFS FloatRange::Linear { min: util::db_to_gain(0.0), max: util::db_to_gain(12.0), }, ) .with_unit(" dB") .with_value_to_string(formatters::v2s_f32_gain_to_db(2)) .with_string_to_value(formatters::s2v_f32_gain_to_db()), } } } impl Default for SafetyLimiter { fn default() -> Self { SafetyLimiter { params: Arc::new(SafetyLimiterParams::default()), buffer_config: BufferConfig { sample_rate: 1.0, min_buffer_size: None, max_buffer_size: 0, process_mode: ProcessMode::Realtime, }, morse_fadeout_samples_start: 0, morse_fadeout_samples_end: 0, morse_seq_edges_samples: [(0, false); 19], morse_fadeout_samples_current: 0, morse_seq_current_sample_idx: 0, morse_seq_current_step_idx: 0, osc_phase_tau: 0.0, osc_phase_tau_dt: 0.0, } } } impl Plugin for SafetyLimiter { const NAME: &'static str = "Safety Limiter"; const VENDOR: &'static str = "Robbert van der Helm"; const URL: &'static str = "https://github.com/robbert-vdh/nih-plug"; const EMAIL: &'static str = "mail@robbertvanderhelm.nl"; const VERSION: &'static str = "0.1.0"; const DEFAULT_NUM_INPUTS: u32 = 2; const DEFAULT_NUM_OUTPUTS: u32 = 2; fn params(&self) -> Arc { self.params.clone() } fn accepts_bus_config(&self, config: &BusConfig) -> bool { config.num_input_channels == config.num_output_channels } fn initialize( &mut self, _bus_config: &BusConfig, buffer_config: &BufferConfig, _context: &mut impl InitContext, ) -> bool { self.buffer_config = *buffer_config; self.morse_fadeout_samples_start = (MORSE_FADEOUT_START_MS / 1000.0 * buffer_config.sample_rate).round() as u32; self.morse_fadeout_samples_end = (MORSE_FADEOUT_END_MS / 1000.0 * buffer_config.sample_rate).round() as u32; self.osc_phase_tau_dt = MORSE_FREQUENCY / buffer_config.sample_rate * std::f32::consts::TAU; self.morse_seq_edges_samples = MORSE_SEQ_EDGES_MS.map(|(time_ms, gate)| { ( (time_ms as f32 / 1000.0 * buffer_config.sample_rate).round() as u32, gate, ) }); true } fn reset(&mut self) { self.morse_fadeout_samples_current = self.morse_fadeout_samples_end; self.reset_morse_signal(); } fn process( &mut self, buffer: &mut Buffer, _context: &mut impl ProcessContext, ) -> ProcessStatus { // Don't do anything when bouncing if self.buffer_config.process_mode == ProcessMode::Offline { return ProcessStatus::Normal; } let &(morse_seq_len, _) = self.morse_seq_edges_samples.last().unwrap(); for mut channel_samples in buffer.iter_samples() { let mut is_peaking = false; for sample in channel_samples.iter_mut() { is_peaking |= sample.abs() > self.params.threshold_gain.value; } if is_peaking { // We'll continue playback where it was left off when this gets triggered before the // fadeout has finished, but otherwise the sequence should be restarted. if self.morse_fadeout_samples_current >= self.morse_fadeout_samples_end { self.reset_morse_signal(); } // This is the number of samples into the fadeout self.morse_fadeout_samples_current = 0; } // Depending on the current gate status in the morse code sequence we'll either play a // sine wave oscillator or silence, and the original audio will be faded back in when it // stays under the threshold for long enough. if self.morse_fadeout_samples_current < self.morse_fadeout_samples_end { // Move to the next step when it is reached // NOTE: This assumes there are no two edges at the same time, becuase that would be // weird // NOTE: Also assumes the sequence starts at 0 let morse_seq_next_step_idx = (self.morse_seq_current_step_idx + 1) % self.morse_seq_edges_samples.len(); if self.morse_seq_current_sample_idx >= self.morse_seq_edges_samples[morse_seq_next_step_idx].0 { self.morse_seq_current_step_idx = morse_seq_next_step_idx; } // And either play or don't play the sine wave depending on the current step's gate // values. We'll wait for the phase wraparound when deactivating the sine wave to // avoid clicks. let (_, gate) = self.morse_seq_edges_samples[self.morse_seq_current_step_idx]; let morse_sample = if gate || self.osc_phase_tau > self.osc_phase_tau_dt { // This phase runs from 0 to `2 * pi` as an optimization, so we can use it // directly. And the sine wave is scaled down to the threshold minus 24 dB let sine_sample = self.osc_phase_tau.sin() * (self.params.threshold_gain.value * 0.125); self.osc_phase_tau += self.osc_phase_tau_dt; if self.osc_phase_tau >= std::f32::consts::TAU { self.osc_phase_tau -= std::f32::consts::TAU; } sine_sample } else { 0.0 }; // We'll do an equal power fade let original_t_squared = if self.morse_fadeout_samples_current < self.morse_fadeout_samples_start { 0.0 } else { (self.morse_fadeout_samples_current - self.morse_fadeout_samples_start) as f32 / (self.morse_fadeout_samples_end - self.morse_fadeout_samples_start) as f32 }; let original_t = original_t_squared.sqrt(); let morse_t = (1.0 - original_t_squared).sqrt(); for sample in channel_samples { *sample = (morse_sample * morse_t) + (*sample * original_t); } self.morse_fadeout_samples_current += 1; self.morse_seq_current_sample_idx += 1; if self.morse_seq_current_sample_idx >= morse_seq_len { self.morse_seq_current_sample_idx -= morse_seq_len; self.morse_seq_current_step_idx = 0; } } } ProcessStatus::Normal } } impl SafetyLimiter { /// Reset the SOS signal to the start. fn reset_morse_signal(&mut self) { self.osc_phase_tau = 0.0; self.morse_seq_current_step_idx = 0; self.morse_seq_current_sample_idx = 0; } } impl ClapPlugin for SafetyLimiter { const CLAP_ID: &'static str = "nl.robbertvanderhelm.safety-limiter"; const CLAP_DESCRIPTION: &'static str = "Plays SOS in Morse code when redlining"; const CLAP_FEATURES: &'static [&'static str] = &["audio_effect", "stereo", "utility"]; const CLAP_MANUAL_URL: &'static str = Self::URL; const CLAP_SUPPORT_URL: &'static str = Self::URL; } impl Vst3Plugin for SafetyLimiter { const VST3_CLASS_ID: [u8; 16] = *b"SafetyLimtrRvdH."; const VST3_CATEGORIES: &'static str = "Fx|Tools"; } nih_export_clap!(SafetyLimiter); nih_export_vst3!(SafetyLimiter);