extern crate proc_macro; use proc_macro::TokenStream; use quote::quote; use std::collections::HashSet; use syn::spanned::Spanned; #[proc_macro_derive(Params, attributes(id, persist, nested))] pub fn derive_params(input: TokenStream) -> TokenStream { let ast = syn::parse_macro_input!(input as syn::DeriveInput); let struct_name = &ast.ident; let fields = match ast.data { syn::Data::Struct(syn::DataStruct { fields: syn::Fields::Named(named_fields), .. }) => named_fields, _ => { return syn::Error::new( ast.span(), "Deriving Params is only supported on structs with named fields", ) .to_compile_error() .into() } }; // We only care about fields with `id`, `persist`, and `nested` attributes. For the `id` fields // we'll build a mapping function that creates a hashmap containing pointers to those // parmaeters. For the `persist` function we'll create functions that serialize and deserialize // those fields individually (so they can be added and removed independently of eachother) using // JSON. The `nested` fields should also implement the `Params` trait and their fields will be // inherited and added to this field's lists. let mut param_mapping_insert_tokens = Vec::new(); let mut param_id_string_tokens = Vec::new(); let mut field_serialize_tokens = Vec::new(); let mut field_deserialize_tokens = Vec::new(); let mut nested_fields_idents = Vec::new(); // We'll also enforce that there are no duplicate keys at compile time // TODO: This doesn't work for nested fields since we don't know anything about the fields on // the nested structs let mut param_ids = HashSet::new(); let mut persist_ids = HashSet::new(); for field in fields.named { let field_name = match &field.ident { Some(ident) => ident, _ => continue, }; // These two attributes are mutually exclusive let mut id_attr: Option = None; let mut persist_attr: Option = None; let mut nested = false; for attr in &field.attrs { if attr.path.is_ident("id") { match attr.parse_meta() { Ok(syn::Meta::NameValue(syn::MetaNameValue { lit: syn::Lit::Str(s), .. })) => { if id_attr.is_none() { id_attr = Some(s.value()); } else { return syn::Error::new(attr.span(), "Duplicate id attribute") .to_compile_error() .into(); } } _ => { return syn::Error::new( attr.span(), "The id attribute should be a key-value pair with a string argument: #[id = \"foo_bar\"]", ) .to_compile_error() .into() } }; } else if attr.path.is_ident("persist") { match attr.parse_meta() { Ok(syn::Meta::NameValue(syn::MetaNameValue { lit: syn::Lit::Str(s), .. })) => { if persist_attr.is_none() { persist_attr = Some(s.value()); } else { return syn::Error::new(attr.span(), "Duplicate persist attribute") .to_compile_error() .into(); } } _ => { return syn::Error::new( attr.span(), "The persist attribute should be a key-value pair with a string argument: #[persist = \"foo_bar\"]", ) .to_compile_error() .into() } }; } else if attr.path.is_ident("nested") { match attr.parse_meta() { Ok(syn::Meta::Path(_)) => { if !nested { nested = true; } else { return syn::Error::new(attr.span(), "Duplicate nested attribute") .to_compile_error() .into(); } } _ => { return syn::Error::new( attr.span(), "The nested attribute should not have any arguments: #[nested]", ) .to_compile_error() .into(); } }; } } match (id_attr, persist_attr) { (Some(param_id), None) => { if !param_ids.insert(param_id.clone()) { return syn::Error::new( field.span(), "Multiple fields with the same parameter ID found", ) .to_compile_error() .into(); } // The specific parameter types know how to convert themselves into the correct ParamPtr // variant param_mapping_insert_tokens .push(quote! { param_map.insert(#param_id, self.#field_name.as_ptr()); }); param_id_string_tokens.push(quote! { #param_id, }); } (None, Some(stable_name)) => { if !persist_ids.insert(stable_name.clone()) { return syn::Error::new( field.span(), "Multiple persisted fields with the same ID found", ) .to_compile_error() .into(); } // We don't know anything about the field types, but because we can generate this // function we get type erasure for free since we only need to worry about byte // vectors field_serialize_tokens.push(quote! { match ::nih_plug::param::internals::PersistentField::map( &self.#field_name, ::nih_plug::param::internals::serialize_field, ) { Ok(data) => { serialized.insert(String::from(#stable_name), data); } Err(err) => { ::nih_plug::nih_log!("Could not serialize '{}': {}", #stable_name, err) } }; }); field_deserialize_tokens.push(quote! { #stable_name => { match ::nih_plug::param::internals::deserialize_field(&data) { Ok(deserialized) => { ::nih_plug::param::internals::PersistentField::set( &self.#field_name, deserialized, ); } Err(err) => { ::nih_plug::nih_log!( "Could not deserialize '{}': {}", #stable_name, err ) } }; } }); } (Some(_), Some(_)) => { return syn::Error::new( field.span(), "The id and persist attributes are mutually exclusive", ) .to_compile_error() .into(); } (None, None) => (), } if nested { nested_fields_idents.push(field_name.clone()); } } quote! { impl Params for #struct_name { fn param_map( self: std::pin::Pin<&Self>, ) -> std::collections::HashMap<&'static str, nih_plug::param::internals::ParamPtr> { // This may not be in scope otherwise use ::nih_plug::Param; let mut param_map = std::collections::HashMap::new(); #(#param_mapping_insert_tokens)* let nested_fields: &[&dyn Params] = &[#(&self.#nested_fields_idents),*]; for nested_params in nested_fields { unsafe { param_map.extend(Pin::new_unchecked(*nested_params).param_map()) }; } param_map } fn param_ids(self: std::pin::Pin<&Self>) -> Vec<&'static str> { let mut ids = vec![#(#param_id_string_tokens)*]; let nested_fields: &[&dyn Params] = &[#(&self.#nested_fields_idents),*]; for nested_params in nested_fields { unsafe { ids.append(&mut Pin::new_unchecked(*nested_params).param_ids()) }; } ids } fn serialize_fields(&self) -> ::std::collections::HashMap { let mut serialized = ::std::collections::HashMap::new(); #(#field_serialize_tokens)* let nested_fields: &[&dyn Params] = &[#(&self.#nested_fields_idents),*]; for nested_params in nested_fields { unsafe { serialized.extend(Pin::new_unchecked(*nested_params).serialize_fields()) }; } serialized } fn deserialize_fields(&self, serialized: &::std::collections::HashMap) { for (field_name, data) in serialized { match field_name.as_str() { #(#field_deserialize_tokens)* _ => nih_log!("Unknown serialized field name: {} (this may not be accurate)", field_name), } } // FIXME: The above warning will course give false postiives when using nested // parameter structs. An easy fix would be to use // https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.drain_filter // once that gets stabilized. let nested_fields: &[&dyn Params] = &[#(&self.#nested_fields_idents),*]; for nested_params in nested_fields { unsafe { Pin::new_unchecked(*nested_params).deserialize_fields(serialized) }; } } } } .into() } #[proc_macro_derive(Enum, attributes(name))] pub fn derive_enum(input: TokenStream) -> TokenStream { let ast = syn::parse_macro_input!(input as syn::DeriveInput); let struct_name = &ast.ident; let variants = match ast.data { // syn::Data::Struct(syn::DataStruct { // fields: syn::Fields::Named(named_fields), // .. // }) => named_fields, syn::Data::Enum(syn::DataEnum { variants, .. }) => variants, _ => { return syn::Error::new(ast.span(), "Deriving Enum is only supported on enums") .to_compile_error() .into() } }; // The `Enum` trait is super simple: variant names are mapped to their index in the declaration // order, and the names are either just the variant name or a `#[name = "..."]` attribute in // case the name should contain a space. let mut variant_names = Vec::new(); let mut to_index_tokens = Vec::new(); let mut from_index_tokens = Vec::new(); for (variant_idx, variant) in variants.iter().enumerate() { if !variant.fields.is_empty() { return syn::Error::new(variant.span(), "Variants cannot have any fields") .to_compile_error() .into(); } let mut name_attr: Option = None; for attr in &variant.attrs { if attr.path.is_ident("name") { match attr.parse_meta() { Ok(syn::Meta::NameValue(syn::MetaNameValue { lit: syn::Lit::Str(s), .. })) => { if name_attr.is_none() { name_attr = Some(s.value()); } else { return syn::Error::new(attr.span(), "Duplicate name attribute") .to_compile_error() .into(); } } _ => { return syn::Error::new( attr.span(), "The name attribute should be a key-value pair with a string argument: #[name = \"foo bar\"]", ) .to_compile_error() .into() } }; } } match name_attr { Some(name) => variant_names.push(name), None => variant_names.push(variant.ident.to_string()), } let variant_ident = &variant.ident; to_index_tokens.push(quote! { #struct_name::#variant_ident => #variant_idx, }); from_index_tokens.push(quote! { #variant_idx => #struct_name::#variant_ident, }); } let from_index_default_tokens = variants.first().map(|v| { let variant_ident = &v.ident; quote! { _ => #struct_name::#variant_ident, } }); quote! { impl Enum for #struct_name { fn variants() -> &'static [&'static str] { &[#(#variant_names),*] } fn to_index(self) -> usize { match self { #(#to_index_tokens)* } } fn from_index(index: usize) -> Self { match index { #(#from_index_tokens)* #from_index_default_tokens } } } } .into() }