use std::marker::PhantomData; /// The audio buffers used during processing. This contains the output audio output buffers with the /// inputs already copied to the outputs. You can either use the iterator adapters to conveniently /// and efficiently iterate over the samples, or you can do your own thing using the raw audio /// buffers. #[derive(Default)] pub struct Buffer<'a> { /// Contains slices for the plugin's outputs. You can't directly create a nested slice form /// apointer to pointers, so this needs to be preallocated in the setup call and kept around /// between process calls. And because storing a reference to this means a) that you need a lot /// of lifetime annotations everywhere and b) that at some point you need unsound lifetime casts /// because this `Buffers` either cannot have the same lifetime as the separately stored output /// buffers, and it also cannot be stored in a field next to it because that would mean /// containing mutable references to data stored in a mutex. output_slices: Vec<&'a mut [f32]>, } impl<'a> Buffer<'a> { /// Returns true if this buffer does not contain any samples. pub fn is_empty(&self) -> bool { self.output_slices.is_empty() || self.output_slices[0].is_empty() } /// Obtain the raw audio buffers. pub fn as_slice(&mut self) -> &mut [&'a mut [f32]] { &mut self.output_slices } /// Iterate over the samples, returning a channel iterator for each sample. pub fn iter_mut<'slice>(&'slice mut self) -> Samples<'slice, 'a> { Samples { buffers: self.output_slices.as_mut_slice(), current_sample: 0, _marker: PhantomData, } } /// Access the raw output slice vector. This neds to be resized to match the number of output /// channels during the plugin's initialization. Then during audio processing, these slices /// should be updated to point to the plugin's audio buffers. /// /// # Safety /// /// The stored slices must point to live data when this object is passed to the plugins' process /// function. The rest of this object also assumes all channel lengths are equal. Panics will /// likely occur if this is not the case. pub unsafe fn as_raw_vec(&mut self) -> &mut Vec<&'a mut [f32]> { &mut self.output_slices } } /// An iterator over all samples in the buffer, yielding iterators over each channel for every /// sample. This iteration order offers good cache locality for per-sample access. pub struct Samples<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_sample: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } impl<'slice, 'sample> Iterator for Samples<'slice, 'sample> { type Item = Channels<'slice, 'sample>; fn next(&mut self) -> Option { if self.current_sample < unsafe { (*self.buffers)[0].len() } { let channels = Channels { buffers: self.buffers, current_sample: self.current_sample, _marker: self._marker, }; self.current_sample += 1; Some(channels) } else { None } } fn size_hint(&self) -> (usize, Option) { let remaining = unsafe { (*self.buffers)[0].len() } - self.current_sample; (remaining, Some(remaining)) } } impl ExactSizeIterator for Samples<'_, '_> {} /// Can construct iterators over actual iterator over the channel data for a sample, yielded by /// [Samples]. pub struct Channels<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_sample: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } /// The actual iterator over the channel data for a sample, yielded by [Channels]. pub struct ChannelsIter<'slice, 'sample: 'slice> { /// The raw output buffers. pub(self) buffers: *mut [&'sample mut [f32]], pub(self) current_sample: usize, pub(self) current_channel: usize, pub(self) _marker: PhantomData<&'slice mut [&'sample mut [f32]]>, } impl<'slice, 'sample> IntoIterator for Channels<'slice, 'sample> { type Item = &'sample mut f32; type IntoIter = ChannelsIter<'slice, 'sample>; fn into_iter(self) -> Self::IntoIter { ChannelsIter { buffers: self.buffers, current_sample: self.current_sample, current_channel: 0, _marker: self._marker, } } } impl<'slice, 'sample> Iterator for ChannelsIter<'slice, 'sample> { type Item = &'sample mut f32; fn next(&mut self) -> Option { if self.current_channel < unsafe { (*self.buffers).len() } { // SAFETY: These bounds have already been checked // SAFETY: It is also not possible to have multiple mutable references to the same // sample at the same time let sample = unsafe { (*self.buffers) .get_unchecked_mut(self.current_channel) .get_unchecked_mut(self.current_sample) }; self.current_channel += 1; Some(sample) } else { None } } fn size_hint(&self) -> (usize, Option) { let remaining = unsafe { (*self.buffers).len() } - self.current_channel; (remaining, Some(remaining)) } } impl ExactSizeIterator for ChannelsIter<'_, '_> {} impl<'slice, 'sample> Channels<'slice, 'sample> { /// Get the number of channels. pub fn len(&self) -> usize { unsafe { (*self.buffers).len() } } /// A resetting iterator. This lets you iterate over the same channels multiple times. Otherwise /// you don't need to use this function as [Channels] already implements [Iterator]. pub fn iter_mut(&mut self) -> ChannelsIter<'slice, 'sample> { ChannelsIter { buffers: self.buffers, current_sample: self.current_sample, current_channel: 0, _marker: PhantomData, } } /// Access a sample by index. Useful when you would otehrwise iterate over this 'Channels' /// iterator multiple times. #[inline] pub fn get_mut(&mut self, channel_index: usize) -> Option<&mut f32> { // SAFETY: The channel bound has already been checked unsafe { Some( (*self.buffers) .get_mut(channel_index)? .get_unchecked_mut(self.current_sample), ) } } /// The same as [Self::get_mut], but without any bounds checking. /// /// # Safety /// /// `channel_index` must be in the range `0..Self::len()`. #[inline] pub unsafe fn get_unchecked_mut(&mut self, channel_index: usize) -> &mut f32 { (*self.buffers) .get_unchecked_mut(channel_index) .get_unchecked_mut(self.current_sample) } } #[cfg(miri)] mod miri { use super::*; #[test] fn repeated_access() { let mut real_buffers = vec![vec![0.0; 512]; 2]; let mut buffer = Buffer::default(); { let slices = unsafe { buffer.as_raw_vec() }; let (first_channel, other_channels) = real_buffers.split_at_mut(1); *slices = vec![&mut first_channel[0], &mut other_channels[0]]; } for samples in buffer.iter_mut() { for sample in samples { *sample += 0.001; } } for mut samples in buffer.iter_mut() { for _ in 0..2 { for sample in samples.iter_mut() { *sample += 0.001; } } } assert_eq!(real_buffers[0][0], 0.003); } }