1
0
Fork 0
nih-plug/src/params.rs
Robbert van der Helm 070e68c084 Move nih_plug to the repo's root
Makes more sense to have this be on the same level as the workspace
since technically this crate can be used separately.
2022-01-26 12:52:57 +01:00

273 lines
9.5 KiB
Rust

// nih-plug: plugins, but rewritten in Rust
// Copyright (C) 2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use std::collections::HashMap;
use std::fmt::Display;
use std::pin::Pin;
pub type FloatParam = PlainParam<f32>;
pub type IntParam = PlainParam<i32>;
/// A distribution for a parameter's range. Probably need to add some forms of skewed ranges and
/// maybe a callback based implementation at some point.
#[derive(Debug)]
pub enum Range<T> {
Linear { min: T, max: T },
}
/// A normalizable range for type `T`, where `self` is expected to be a type `R<T>`. Higher kinded
/// types would have made this trait definition a lot clearer.
trait NormalizebleRange<T> {
/// Normalize an unnormalized value. Will be clamped to the bounds of the range if the
/// normalized value exceeds `[0, 1]`.
fn normalize(&self, unnormalized: T) -> f32;
/// Unnormalize a normalized value. Will be clamped to `[0, 1]` if the unnormalized value would
/// exceed that range.
fn unnormalize(&self, normalized: f32) -> T;
}
/// A numerical parameter that's stored unnormalized. The range is used for the normalization
/// process.
pub struct PlainParam<T> {
/// The field's current, normalized value. Should be initialized with the default value. Storing
/// parameter values like this instead of in a single contiguous array is bad for cache
/// locality, but it does allow for a much nicer declarative API.
pub value: T,
/// The distribution of the parameter's values.
pub range: Range<T>,
/// The parameter's human readable display name.
pub name: &'static str,
/// The parameter value's unit, added after `value_to_string` if that is set.
pub unit: &'static str,
/// Optional custom conversion function from an **unnormalized** value to a string.
pub value_to_string: Option<Box<dyn Send + Sync + Fn(T) -> String>>,
/// Optional custom conversion function from a string to an **unnormalized** value. If the
/// string cannot be parsed, then this should return a `None`. If this happens while the
/// parameter is being updated then the update will be canceled.
pub string_to_value: Option<Box<dyn Send + Sync + Fn(&str) -> Option<T>>>,
}
macro_rules! impl_plainparam {
($ty:ident) => {
impl $ty {
/// Set this parameter based on a string. Returns whether the updating succeeded. That
/// can fail if the string cannot be parsed.
///
/// TODO: After implementing VST3, check if we handle parsing failures correctly
pub fn from_string(&mut self, string: &str) -> bool {
let value = match &self.string_to_value {
Some(f) => f(string),
// TODO: Check how Rust's parse function handles trailing garbage
None => string.parse().ok(),
};
match value {
Some(unnormalized) => {
self.value = unnormalized;
true
}
None => false,
}
}
/// Get the normalized `[0, 1]` value for this parameter.
pub fn normalized_value(&self) -> f32 {
self.range.normalize(self.value)
}
/// Set this parameter based on a normalized value.
pub fn set_normalized_value(&mut self, normalized: f32) {
self.value = self.range.unnormalize(normalized);
}
/// Implementation detail for implementing [Params]. This should not be used directly.
pub fn as_ptr(&self) -> ParamPtr {
ParamPtr::$ty(self as *const $ty as *mut $ty)
}
}
};
}
impl_plainparam!(FloatParam);
impl_plainparam!(IntParam);
impl<T: Display + Copy> Display for PlainParam<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.value_to_string {
Some(func) => write!(f, "{}{}", func(self.value), self.unit),
None => write!(f, "{}{}", self.value, self.unit),
}
}
}
impl NormalizebleRange<f32> for Range<f32> {
fn normalize(&self, unnormalized: f32) -> f32 {
match &self {
Range::Linear { min, max } => (unnormalized - min) / (max - min),
}
.clamp(0.0, 1.0)
}
fn unnormalize(&self, normalized: f32) -> f32 {
let normalized = normalized.clamp(0.0, 1.0);
match &self {
Range::Linear { min, max } => (normalized * (max - min)) + min,
}
}
}
impl NormalizebleRange<i32> for Range<i32> {
fn normalize(&self, unnormalized: i32) -> f32 {
match &self {
Range::Linear { min, max } => (unnormalized - min) as f32 / (max - min) as f32,
}
.clamp(0.0, 1.0)
}
fn unnormalize(&self, normalized: f32) -> i32 {
let normalized = normalized.clamp(0.0, 1.0);
match &self {
Range::Linear { min, max } => (normalized * (max - min) as f32).round() as i32 + min,
}
}
}
/// Describes a struct containing parameters. The idea is that we can have a normal struct
/// containing [FloatParam] and other parameter types with attributes describing a unique identifier
/// for each parameter. We can then build a mapping from those parameter IDs to the parameters using
/// the [Params::param_map] function. That way we can have easy to work with JUCE-style parameter
/// objects in the plugin without needing to manually register each parameter, like you would in
/// JUCE.
///
/// # Safety
///
/// This implementation is safe when using from the wrapper because the plugin object needs to be
/// pinned, and it can never outlive the wrapper.
pub trait Params {
/// Create a mapping from unique parameter IDs to parameters. Dereferencing the pointers stored
/// in the values is only valid as long as this pinned object is valid.
fn param_map(self: Pin<&Self>) -> HashMap<&'static str, ParamPtr>;
}
/// Internal pointers to parameters. This is an implementation detail used by the wrappers.
#[derive(Debug)]
pub enum ParamPtr {
FloatParam(*mut FloatParam),
IntParam(*mut IntParam),
}
impl ParamPtr {
/// Get the human readable name for this parameter.
///
/// # Safety
///
/// Calling this function is only safe as long as the object this `ParamPtr` was created for is
/// still alive.
pub unsafe fn name(&self) -> &'static str {
match &self {
ParamPtr::FloatParam(p) => (**p).name,
ParamPtr::IntParam(p) => (**p).name,
}
}
/// Set this parameter based on a string. Returns whether the updating succeeded. That can fail
/// if the string cannot be parsed.
///
/// # Safety
///
/// Calling this function is only safe as long as the object this `ParamPtr` was created for is
/// still alive.
pub unsafe fn from_string(&mut self, string: &str) -> bool {
match &self {
ParamPtr::FloatParam(p) => (**p).from_string(string),
ParamPtr::IntParam(p) => (**p).from_string(string),
}
}
/// Get the normalized `[0, 1]` value for this parameter.
///
/// # Safety
///
/// Calling this function is only safe as long as the object this `ParamPtr` was created for is
/// still alive.
pub unsafe fn normalized_value(&self) -> f32 {
match &self {
ParamPtr::FloatParam(p) => (**p).normalized_value(),
ParamPtr::IntParam(p) => (**p).normalized_value(),
}
}
/// Set this parameter based on a normalized value.
///
/// # Safety
///
/// Calling this function is only safe as long as the object this `ParamPtr` was created for is
/// still alive.
pub unsafe fn set_normalized_value(&self, normalized: f32) {
match &self {
ParamPtr::FloatParam(p) => (**p).set_normalized_value(normalized),
ParamPtr::IntParam(p) => (**p).set_normalized_value(normalized),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn make_linear_float_range() -> Range<f32> {
Range::Linear {
min: 10.0,
max: 20.0,
}
}
fn make_linear_int_range() -> Range<i32> {
Range::Linear { min: -10, max: 10 }
}
#[test]
fn range_normalize_linear_float() {
let range = make_linear_float_range();
assert_eq!(range.normalize(17.5), 0.75);
}
#[test]
fn range_normalize_linear_int() {
let range = make_linear_int_range();
assert_eq!(range.normalize(-5), 0.25);
}
#[test]
fn range_unnormalize_linear_float() {
let range = make_linear_float_range();
assert_eq!(range.unnormalize(0.25), 12.5);
}
#[test]
fn range_unnormalize_linear_int() {
let range = make_linear_int_range();
assert_eq!(range.unnormalize(0.75), 5);
}
#[test]
fn range_unnormalize_linear_int_rounding() {
let range = make_linear_int_range();
assert_eq!(range.unnormalize(0.73), 5);
}
}