1
0
Fork 0
nih-plug/src/wrapper/clap/wrapper.rs
2022-04-11 20:53:25 +02:00

2657 lines
113 KiB
Rust

// Clippy doesn't understand it when we use a unit in our `check_null_ptr!()` maccro, even if we
// explicitly pattern match on that unit
#![allow(clippy::unused_unit)]
use atomic_float::AtomicF32;
use atomic_refcell::{AtomicRefCell, AtomicRefMut};
use clap_sys::events::{
clap_event_header, clap_event_midi, clap_event_note, clap_event_note_expression,
clap_event_param_gesture, clap_event_param_value, clap_event_type, clap_input_events,
clap_output_events, CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_IS_LIVE, CLAP_EVENT_MIDI,
CLAP_EVENT_NOTE_EXPRESSION, CLAP_EVENT_NOTE_OFF, CLAP_EVENT_NOTE_ON,
CLAP_EVENT_PARAM_GESTURE_BEGIN, CLAP_EVENT_PARAM_GESTURE_END, CLAP_EVENT_PARAM_VALUE,
CLAP_NOTE_EXPRESSION_BRIGHTNESS, CLAP_NOTE_EXPRESSION_EXPRESSION, CLAP_NOTE_EXPRESSION_PAN,
CLAP_NOTE_EXPRESSION_PRESSURE, CLAP_NOTE_EXPRESSION_TUNING, CLAP_NOTE_EXPRESSION_VIBRATO,
CLAP_NOTE_EXPRESSION_VOLUME, CLAP_TRANSPORT_HAS_BEATS_TIMELINE,
CLAP_TRANSPORT_HAS_SECONDS_TIMELINE, CLAP_TRANSPORT_HAS_TEMPO,
CLAP_TRANSPORT_HAS_TIME_SIGNATURE, CLAP_TRANSPORT_IS_LOOP_ACTIVE, CLAP_TRANSPORT_IS_PLAYING,
CLAP_TRANSPORT_IS_RECORDING, CLAP_TRANSPORT_IS_WITHIN_PRE_ROLL,
};
use clap_sys::ext::audio_ports::{
clap_audio_port_info, clap_plugin_audio_ports, CLAP_AUDIO_PORT_IS_MAIN, CLAP_EXT_AUDIO_PORTS,
CLAP_PORT_MONO, CLAP_PORT_STEREO,
};
use clap_sys::ext::audio_ports_config::{
clap_audio_ports_config, clap_plugin_audio_ports_config, CLAP_EXT_AUDIO_PORTS_CONFIG,
};
use clap_sys::ext::event_filter::{clap_plugin_event_filter, CLAP_EXT_EVENT_FILTER};
use clap_sys::ext::gui::{
clap_gui_resize_hints, clap_host_gui, clap_plugin_gui, clap_window, CLAP_EXT_GUI,
CLAP_WINDOW_API_COCOA, CLAP_WINDOW_API_WIN32, CLAP_WINDOW_API_X11,
};
use clap_sys::ext::latency::{clap_host_latency, clap_plugin_latency, CLAP_EXT_LATENCY};
use clap_sys::ext::note_ports::{
clap_note_port_info, clap_plugin_note_ports, CLAP_EXT_NOTE_PORTS, CLAP_NOTE_DIALECT_CLAP,
CLAP_NOTE_DIALECT_MIDI,
};
use clap_sys::ext::params::{
clap_host_params, clap_param_info, clap_plugin_params, CLAP_EXT_PARAMS,
CLAP_PARAM_IS_AUTOMATABLE, CLAP_PARAM_IS_BYPASS, CLAP_PARAM_IS_HIDDEN, CLAP_PARAM_IS_READONLY,
CLAP_PARAM_IS_STEPPED, CLAP_PARAM_RESCAN_VALUES,
};
use clap_sys::ext::state::{clap_plugin_state, CLAP_EXT_STATE};
use clap_sys::ext::tail::{clap_plugin_tail, CLAP_EXT_TAIL};
use clap_sys::ext::thread_check::{clap_host_thread_check, CLAP_EXT_THREAD_CHECK};
use clap_sys::fixedpoint::{CLAP_BEATTIME_FACTOR, CLAP_SECTIME_FACTOR};
use clap_sys::host::clap_host;
use clap_sys::id::{clap_id, CLAP_INVALID_ID};
use clap_sys::plugin::clap_plugin;
use clap_sys::process::{
clap_process, clap_process_status, CLAP_PROCESS_CONTINUE, CLAP_PROCESS_CONTINUE_IF_NOT_QUIET,
CLAP_PROCESS_ERROR,
};
use clap_sys::stream::{clap_istream, clap_ostream};
use crossbeam::atomic::AtomicCell;
use crossbeam::channel::{self, SendTimeoutError};
use crossbeam::queue::ArrayQueue;
use midi_consts::channel_event as midi;
use parking_lot::RwLock;
use raw_window_handle::RawWindowHandle;
use std::any::Any;
use std::cmp;
use std::collections::{HashMap, HashSet, VecDeque};
use std::ffi::{c_void, CStr};
use std::mem;
use std::os::raw::c_char;
use std::ptr;
use std::sync::atomic::{AtomicBool, AtomicU32, Ordering};
use std::sync::{Arc, Weak};
use std::thread::{self, ThreadId};
use std::time::Duration;
use super::context::{WrapperGuiContext, WrapperProcessContext};
use super::descriptor::PluginDescriptor;
use super::util::ClapPtr;
use crate::buffer::Buffer;
use crate::context::Transport;
use crate::event_loop::{EventLoop, MainThreadExecutor, TASK_QUEUE_CAPACITY};
use crate::midi::{MidiConfig, NoteEvent};
use crate::param::internals::{ParamPtr, Params};
use crate::param::ParamFlags;
use crate::plugin::{
BufferConfig, BusConfig, ClapPlugin, Editor, ParentWindowHandle, ProcessStatus,
};
use crate::util::permit_alloc;
use crate::wrapper::state::{self, PluginState};
use crate::wrapper::util::{hash_param_id, process_wrapper, strlcpy};
/// How many output parameter changes we can store in our output parameter change queue. Storing
/// more than this many parmaeters at a time will cause changes to get lost.
const OUTPUT_EVENT_QUEUE_CAPACITY: usize = 2048;
#[repr(C)]
pub struct Wrapper<P: ClapPlugin> {
// Keep the vtable as the first field so we can do a simple pointer cast
pub clap_plugin: clap_plugin,
/// A reference to this object, upgraded to an `Arc<Self>` for the GUI context.
this: AtomicRefCell<Weak<Self>>,
/// The wrapped plugin instance.
plugin: RwLock<P>,
/// The plugin's parameters. These are fetched once during initialization. That way the
/// `ParamPtr`s are guaranteed to live at least as long as this object and we can interact with
/// the `Params` object without having to acquire a lock on `plugin`.
params: Arc<dyn Params>,
/// The plugin's editor, if it has one. This object does not do anything on its own, but we need
/// to instantiate this in advance so we don't need to lock the entire [`Plugin`] object when
/// creating an editor.
editor: Option<Arc<dyn Editor>>,
/// A handle for the currently active editor instance. The plugin should implement `Drop` on
/// this handle for its closing behavior.
editor_handle: RwLock<Option<Box<dyn Any + Send + Sync>>>,
/// The DPI scaling factor as passed to the [IPlugViewContentScaleSupport::set_scale_factor()]
/// function. Defaults to 1.0, and will be kept there on macOS. When reporting and handling size
/// the sizes communicated to and from the DAW should be scaled by this factor since NIH-plug's
/// APIs only deal in logical pixels.
editor_scaling_factor: AtomicF32,
is_processing: AtomicBool,
/// The current IO configuration, modified through the `clap_plugin_audio_ports_config`
/// extension.
current_bus_config: AtomicCell<BusConfig>,
/// The current buffer configuration, containing the sample rate and the maximum block size.
/// Will be set in `clap_plugin::activate()`.
current_buffer_config: AtomicCell<Option<BufferConfig>>,
/// The incoming events for the plugin, if `P::MIDI_INPUT` is set to `MidiConfig::Basic` or
/// higher.
///
/// TODO: Maybe load these lazily at some point instead of needing to spool them all to this
/// queue first
input_events: AtomicRefCell<VecDeque<NoteEvent>>,
/// Stores any events the plugin has output during the current processing cycle, analogous to
/// `input_events`.
output_events: AtomicRefCell<VecDeque<NoteEvent>>,
/// The last process status returned by the plugin. This is used for tail handling.
last_process_status: AtomicCell<ProcessStatus>,
/// The current latency in samples, as set by the plugin through the [`ProcessContext`]. uses
/// the latency extnesion
pub current_latency: AtomicU32,
/// Contains slices for the plugin's outputs. You can't directly create a nested slice form
/// apointer to pointers, so this needs to be preallocated in the setup call and kept around
/// between process calls. This buffer owns the vector, because otherwise it would need to store
/// a mutable reference to the data contained in this mutex.
pub output_buffer: AtomicRefCell<Buffer<'static>>,
/// The plugin is able to restore state through a method on the `GuiContext`. To avoid changing
/// parameters mid-processing and running into garbled data if the host also tries to load state
/// at the same time the restoring happens at the end of each processing call. If this zero
/// capacity channel contains state data at that point, then the audio thread will take the
/// state out of the channel, restore the state, and then send it back through the same channel.
/// In other words, the GUI thread acts as a sender and then as a receiver, while the audio
/// thread acts as a receiver and then as a sender. That way deallocation can happen on the GUI
/// thread. All of this happens without any blocking on the audio thread.
updated_state_sender: channel::Sender<PluginState>,
/// The receiver belonging to [`new_state_sender`][Self::new_state_sender].
updated_state_receiver: channel::Receiver<PluginState>,
/// Needs to be boxed because the plugin object is supposed to contain a static reference to
/// this.
plugin_descriptor: Box<PluginDescriptor<P>>,
// We'll query all of the host's extensions upfront
host_callback: ClapPtr<clap_host>,
clap_plugin_audio_ports_config: clap_plugin_audio_ports_config,
/// During initialization we'll ask `P` which bus configurations it supports. The host can then
/// use the audio ports config extension to choose a configuration. Right now we only query mono
/// and stereo configurations, with and without inputs, as well as the plugin's default input
/// and output channel counts if that does not match one of those configurations (to do the
/// least surprising thing).
///
/// TODO: Support surround setups once a plugin needs that
supported_bus_configs: Vec<BusConfig>,
clap_plugin_audio_ports: clap_plugin_audio_ports,
clap_plugin_event_filter: clap_plugin_event_filter,
clap_plugin_gui: clap_plugin_gui,
host_gui: AtomicRefCell<Option<ClapPtr<clap_host_gui>>>,
clap_plugin_latency: clap_plugin_latency,
host_latency: AtomicRefCell<Option<ClapPtr<clap_host_latency>>>,
clap_plugin_note_ports: clap_plugin_note_ports,
clap_plugin_params: clap_plugin_params,
host_params: AtomicRefCell<Option<ClapPtr<clap_host_params>>>,
// These fiels are exactly the same as their VST3 wrapper counterparts.
//
/// The keys from `param_map` in a stable order.
param_hashes: Vec<u32>,
/// A mapping from parameter ID hashes (obtained from the string parameter IDs) to pointers to
/// parameters belonging to the plugin. These addresses will remain stable as long as the
/// `params` object does not get deallocated.
param_by_hash: HashMap<u32, ParamPtr>,
/// The group name of a parameter, indexed by the parameter's hash. Nested groups are delimited
/// by slashes, and they're only used to allow the DAW to display parameters in a tree
/// structure.
param_group_by_hash: HashMap<u32, String>,
/// Mappings from string parameter indentifiers to parameter hashes. Useful for debug logging
/// and when storing and restoring plugin state.
param_id_to_hash: HashMap<String, u32>,
/// The inverse mapping from [`param_by_hash`][Self::param_by_hash]. This is needed to be able
/// to have an ergonomic parameter setting API that uses references to the parameters instead of
/// having to add a setter function to the parameter (or even worse, have it be completely
/// untyped).
pub param_ptr_to_hash: HashMap<ParamPtr, u32>,
/// A queue of parameter changes and gestures that should be output in either the next process
/// call or in the next parameter flush.
///
/// XXX: There's no guarentee that a single parmaeter doesn't occur twice in this queue, but
/// even if it does then that should still not be a problem because the host also reads it
/// in the same order, right?
output_parameter_events: ArrayQueue<OutputParamEvent>,
host_thread_check: AtomicRefCell<Option<ClapPtr<clap_host_thread_check>>>,
clap_plugin_state: clap_plugin_state,
clap_plugin_tail: clap_plugin_tail,
/// A queue of tasks that still need to be performed. Because CLAP lets the plugin request a
/// host callback directly, we don't need to use the OsEventLoop we use in our other plugin
/// implementations. Instead, we'll post tasks to this queue, ask the host to call
/// [`on_main_thread()`][Self::on_main_thread()] on the main thread, and then continue to pop
/// tasks off this queue there until it is empty.
tasks: ArrayQueue<Task>,
/// The ID of the main thread. In practice this is the ID of the thread that created this
/// object. If the host supports the thread check extension (and
/// [`host_thread_check`][Self::host_thread_check] thus contains a value), then that extension
/// is used instead.
main_thread_id: ThreadId,
}
/// Tasks that can be sent from the plugin to be executed on the main thread in a non-blocking
/// realtime safe way. Instead of using a random thread or the OS' event loop like in the Linux
/// implementation, this uses [`clap_host::request_callback()`] instead.
#[derive(Debug)]
pub enum Task {
/// Inform the host that the latency has changed.
LatencyChanged,
/// Tell the host that it should rescan the current parameter values.
RescanParamValues,
}
/// The types of CLAP parameter updates for events.
pub enum ClapParamUpdate {
/// Set the parameter to this plain value. In our wrapper the plain values are the normalized
/// values multiplied by the step count for discrete parameters.
PlainValueSet(f64),
// TODO: Modulation would need special handling as it's an absolute offset for the current
// value.
// /// Add a delta to the parameter's current plain value (so again, multiplied by the step size).
// PlainValueMod(f64),
}
/// A parameter event that should be output by the plugin, stored in a queue on the wrapper and
/// written to the host either at the end of the process function or during a flush.
#[derive(Debug, Clone)]
pub enum OutputParamEvent {
/// Begin an automation gesture. This must always be sent before sending [`SetValue`].
BeginGesture { param_hash: u32 },
/// Change the value of a parmaeter using a plain CLAP value, aka the normalized value
/// multiplied by the number of steps.
SetValue {
/// The internal hash for the parameter.
param_hash: u32,
/// The 'plain' value as reported to CLAP. This is the normalized value multiplied by
/// [`Param::step_size()`][crate::Param::step_size()].
clap_plain_value: f64,
},
/// Begin an automation gesture. This must always be sent after sending one or more [`SetValue`]
/// events.
EndGesture { param_hash: u32 },
}
/// Because CLAP has this [`clap_host::request_host_callback()`] function, we don't need to use
/// `OsEventLoop` and can instead just request a main thread callback directly.
impl<P: ClapPlugin> EventLoop<Task, Wrapper<P>> for Wrapper<P> {
fn new_and_spawn(_executor: std::sync::Weak<Self>) -> Self {
panic!("What are you doing");
}
fn do_maybe_async(&self, task: Task) -> bool {
if self.is_main_thread() {
unsafe { self.execute(task) };
true
} else {
let success = self.tasks.push(task).is_ok();
if success {
// CLAP lets us use the host's event loop instead of having to implement our own
let host = &self.host_callback;
unsafe { (host.request_callback)(&**host) };
}
success
}
}
fn is_main_thread(&self) -> bool {
// If the host supports the thread check interface then we'll use that, otherwise we'll
// check if this is the same thread as the one that created the plugin instance.
match &*self.host_thread_check.borrow() {
Some(thread_check) => unsafe { (thread_check.is_main_thread)(&*self.host_callback) },
// FIXME: `thread::current()` may allocate the first time it's called, is there a safe
// nonallocating version of this without using huge OS-specific libraries?
None => permit_alloc(|| thread::current().id() == self.main_thread_id),
}
}
}
impl<P: ClapPlugin> MainThreadExecutor<Task> for Wrapper<P> {
unsafe fn execute(&self, task: Task) {
// This function is always called from the main thread, from [Self::on_main_thread].
match task {
Task::LatencyChanged => match &*self.host_latency.borrow() {
Some(host_latency) => {
// XXX: The CLAP docs mention that you should request a restart if this happens
// while the plugin is activated (which is not entirely the same thing as
// is processing, but we'll treat it as the same thing). In practice just
// calling the latency changed function also seems to work just fine.
if self.is_processing.load(Ordering::SeqCst) {
(self.host_callback.request_restart)(&*self.host_callback)
} else {
(host_latency.changed)(&*self.host_callback)
}
}
None => nih_debug_assert_failure!("Host does not support the latency extension"),
},
Task::RescanParamValues => match &*self.host_params.borrow() {
Some(host_params) => {
(host_params.rescan)(&*self.host_callback, CLAP_PARAM_RESCAN_VALUES);
}
None => nih_debug_assert_failure!("The host does not support parameters? What?"),
},
};
}
}
impl<P: ClapPlugin> Wrapper<P> {
pub fn new(host_callback: *const clap_host) -> Arc<Self> {
let plugin = RwLock::new(P::default());
let editor = plugin.read().editor().map(Arc::from);
// This is used to allow the plugin to restore preset data from its editor, see the comment
// on `Self::updated_state_sender`
let (updated_state_sender, updated_state_receiver) = channel::bounded(0);
let plugin_descriptor = Box::new(PluginDescriptor::default());
// We're not allowed to query any extensions until the init function has been called, so we
// need a bunch of AtomicRefCells instead
assert!(!host_callback.is_null());
let host_callback = unsafe { ClapPtr::new(host_callback) };
// This is a mapping from the parameter IDs specified by the plugin to pointers to thsoe
// parameters. These pointers are assumed to be safe to dereference as long as
// `wrapper.plugin` is alive. The plugin API identifiers these parameters by hashes, which
// we'll calculate from the string ID specified by the plugin. These parameters should also
// remain in the same order as the one returned by the plugin.
let params = plugin.read().params();
let param_id_hashes_ptrs_groups: Vec<_> = params
.param_map()
.into_iter()
.map(|(id, ptr, group)| {
let hash = hash_param_id(&id);
(id, hash, ptr, group)
})
.collect();
if cfg!(debug_assertions) {
let param_map = params.param_map();
let param_ids: HashSet<_> = param_id_hashes_ptrs_groups
.iter()
.map(|(id, _, _, _)| id.clone())
.collect();
nih_debug_assert_eq!(
param_map.len(),
param_ids.len(),
"The plugin has duplicate parameter IDs, weird things may happen. \
Consider using 6 character parameter IDs to avoid collissions.."
);
}
if cfg!(debug_assertions) {
let mut bypass_param_exists = false;
for (_, _, ptr, _) in &param_id_hashes_ptrs_groups {
let flags = unsafe { ptr.flags() };
let is_bypass = flags.contains(ParamFlags::BYPASS);
if is_bypass && bypass_param_exists {
nih_debug_assert_failure!(
"Duplicate bypass parameters found, the host will only use the first one"
);
}
bypass_param_exists |= is_bypass;
}
}
let param_hashes = param_id_hashes_ptrs_groups
.iter()
.map(|(_, hash, _, _)| *hash)
.collect();
let param_by_hash = param_id_hashes_ptrs_groups
.iter()
.map(|(_, hash, ptr, _)| (*hash, *ptr))
.collect();
let param_group_by_hash = param_id_hashes_ptrs_groups
.iter()
.map(|(_, hash, _, group)| (*hash, group.clone()))
.collect();
let param_id_to_hash = param_id_hashes_ptrs_groups
.iter()
.map(|(id, hash, _, _)| (id.clone(), *hash))
.collect();
let param_ptr_to_hash = param_id_hashes_ptrs_groups
.into_iter()
.map(|(_, hash, ptr, _)| (ptr, hash))
.collect();
// Query all sensible bus configurations supported by the plugin. We don't do surround or
// anything beyond stereo right now.
let mut supported_bus_configs = Vec::new();
for num_output_channels in [1, 2] {
for num_input_channels in [0, num_output_channels] {
let bus_config = BusConfig {
num_input_channels,
num_output_channels,
};
if plugin.read().accepts_bus_config(&bus_config) {
supported_bus_configs.push(bus_config);
}
}
}
// In the off chance that the default config specified by the plugin is not in the above
// list, we'll try that as well.
let default_bus_config = BusConfig {
num_input_channels: P::DEFAULT_NUM_INPUTS,
num_output_channels: P::DEFAULT_NUM_OUTPUTS,
};
if !supported_bus_configs.contains(&default_bus_config)
&& plugin.read().accepts_bus_config(&default_bus_config)
{
supported_bus_configs.push(default_bus_config);
}
let wrapper = Self {
clap_plugin: clap_plugin {
// This needs to live on the heap because the plugin object contains a direct
// reference to the manifest as a value. We could share this between instances of
// the plugin using an `Arc`, but this doesn't consume a lot of memory so it's not a
// huge deal.
desc: plugin_descriptor.clap_plugin_descriptor(),
// We already need to use pointer casts in the factory, so might as well continue
// doing that here
plugin_data: ptr::null_mut(),
init: Self::init,
destroy: Self::destroy,
activate: Self::activate,
deactivate: Self::deactivate,
start_processing: Self::start_processing,
stop_processing: Self::stop_processing,
reset: Self::reset,
process: Self::process,
get_extension: Self::get_extension,
on_main_thread: Self::on_main_thread,
},
this: AtomicRefCell::new(Weak::new()),
plugin,
params,
editor,
editor_handle: RwLock::new(None),
editor_scaling_factor: AtomicF32::new(1.0),
is_processing: AtomicBool::new(false),
current_bus_config: AtomicCell::new(BusConfig {
num_input_channels: P::DEFAULT_NUM_INPUTS,
num_output_channels: P::DEFAULT_NUM_OUTPUTS,
}),
current_buffer_config: AtomicCell::new(None),
input_events: AtomicRefCell::new(VecDeque::with_capacity(512)),
output_events: AtomicRefCell::new(VecDeque::with_capacity(512)),
last_process_status: AtomicCell::new(ProcessStatus::Normal),
current_latency: AtomicU32::new(0),
output_buffer: AtomicRefCell::new(Buffer::default()),
updated_state_sender,
updated_state_receiver,
plugin_descriptor,
host_callback,
clap_plugin_audio_ports_config: clap_plugin_audio_ports_config {
count: Self::ext_audio_ports_config_count,
get: Self::ext_audio_ports_config_get,
select: Self::ext_audio_ports_config_select,
},
supported_bus_configs,
clap_plugin_audio_ports: clap_plugin_audio_ports {
count: Self::ext_audio_ports_count,
get: Self::ext_audio_ports_get,
},
clap_plugin_event_filter: clap_plugin_event_filter {
accepts: Self::ext_event_filter_accepts,
},
clap_plugin_gui: clap_plugin_gui {
is_api_supported: Self::ext_gui_is_api_supported,
get_preferred_api: Self::ext_gui_get_preferred_api,
create: Self::ext_gui_create,
destroy: Self::ext_gui_destroy,
set_scale: Self::ext_gui_set_scale,
get_size: Self::ext_gui_get_size,
can_resize: Self::ext_gui_can_resize,
get_resize_hints: Self::ext_gui_get_resize_hints,
adjust_size: Self::ext_gui_adjust_size,
set_size: Self::ext_gui_set_size,
set_parent: Self::ext_gui_set_parent,
set_transient: Self::ext_gui_set_transient,
suggest_title: Self::ext_gui_suggest_title,
show: Self::ext_gui_show,
hide: Self::ext_gui_hide,
},
host_gui: AtomicRefCell::new(None),
clap_plugin_latency: clap_plugin_latency {
get: Self::ext_latency_get,
},
host_latency: AtomicRefCell::new(None),
clap_plugin_note_ports: clap_plugin_note_ports {
count: Self::ext_note_ports_count,
get: Self::ext_note_ports_get,
},
clap_plugin_params: clap_plugin_params {
count: Self::ext_params_count,
get_info: Self::ext_params_get_info,
get_value: Self::ext_params_get_value,
value_to_text: Self::ext_params_value_to_text,
text_to_value: Self::ext_params_text_to_value,
flush: Self::ext_params_flush,
},
host_params: AtomicRefCell::new(None),
param_hashes,
param_by_hash,
param_group_by_hash,
param_id_to_hash,
param_ptr_to_hash,
output_parameter_events: ArrayQueue::new(OUTPUT_EVENT_QUEUE_CAPACITY),
host_thread_check: AtomicRefCell::new(None),
clap_plugin_state: clap_plugin_state {
save: Self::ext_state_save,
load: Self::ext_state_load,
},
clap_plugin_tail: clap_plugin_tail {
get: Self::ext_tail_get,
},
tasks: ArrayQueue::new(TASK_QUEUE_CAPACITY),
main_thread_id: thread::current().id(),
};
// Finally, the wrapper needs to contain a reference to itself so we can create GuiContexts
// when opening plugin editors
let wrapper = Arc::new(wrapper);
*wrapper.this.borrow_mut() = Arc::downgrade(&wrapper);
wrapper
}
fn make_gui_context(self: Arc<Self>) -> Arc<WrapperGuiContext<P>> {
Arc::new(WrapperGuiContext { wrapper: self })
}
fn make_process_context(&self, transport: Transport) -> WrapperProcessContext<'_, P> {
WrapperProcessContext {
wrapper: self,
input_events_guard: self.input_events.borrow_mut(),
output_events_guard: self.output_events.borrow_mut(),
transport,
}
}
/// Queue a parmeter output event to be sent to the host at the end of the audio processing
/// cycle, and request a parameter flush from the host if the plugin is not currently processing
/// audio. The parameter's actual value will only be updated at that point so the value won't
/// change in the middle of a processing call.
///
/// Returns `false` if the parameter value queue was full and the update will not be sent to the
/// host (it will still be set on the plugin either way).
pub fn queue_parameter_event(&self, event: OutputParamEvent) -> bool {
let result = self.output_parameter_events.push(event).is_ok();
match &*self.host_params.borrow() {
Some(host_params) if !self.is_processing.load(Ordering::SeqCst) => {
unsafe { (host_params.request_flush)(&*self.host_callback) };
}
Some(_) => (),
None => nih_debug_assert_failure!("The host does not support parameters? What?"),
}
result
}
/// If there's an editor open, let it know that parameter values have changed. This should be
/// called whenever there's been a call or multiple calls to
/// [`update_plain_value_by_hash()[Self::update_plain_value_by_hash()`].
pub fn notify_param_values_changed(&self) {
if let Some(editor) = &self.editor {
editor.param_values_changed();
}
}
/// Request a resize based on the editor's current reported size. As of CLAP 0.24 this can
/// safely be called from any thread. If this returns `false`, then the plugin should reset its
/// size back to the previous value.
pub fn request_resize(&self) -> bool {
match (&*self.host_gui.borrow(), &self.editor) {
(Some(host_gui), Some(editor)) => {
let (unscaled_width, unscaled_height) = editor.size();
let scaling_factor = self.editor_scaling_factor.load(Ordering::Relaxed);
unsafe {
(host_gui.request_resize)(
&*self.host_callback,
(unscaled_width as f32 * scaling_factor).round() as u32,
(unscaled_height as f32 * scaling_factor).round() as u32,
)
}
}
_ => false,
}
}
/// Convenience function for setting a value for a parameter as triggered by a VST3 parameter
/// update. The same rate is for updating parameter smoothing.
///
/// After calling this function, you should call
/// [`notify_param_values_changed()`][Self::notify_param_values_changed()] to allow the editor
/// to update itself. This needs to be done seperately so you can process parameter changes in
/// batches.
///
/// # Note
///
/// These values are CLAP plain values, which include a step count multiplier for discrete
/// parameter values.
pub fn update_plain_value_by_hash(
&self,
hash: u32,
update: ClapParamUpdate,
sample_rate: Option<f32>,
) -> bool {
match self.param_by_hash.get(&hash) {
Some(param_ptr) => {
let normalized_value = match update {
ClapParamUpdate::PlainValueSet(clap_plain_value) => {
clap_plain_value as f32
/ unsafe { param_ptr.step_count() }.unwrap_or(1) as f32
}
};
// Also update the parameter's smoothing if applicable
match (param_ptr, sample_rate) {
(_, Some(sample_rate)) => unsafe {
param_ptr.set_normalized_value(normalized_value);
param_ptr.update_smoother(sample_rate, false);
},
_ => unsafe { param_ptr.set_normalized_value(normalized_value) },
}
true
}
_ => false,
}
}
/// Handle all incoming events from an event queue. This will clear `self.input_events` first.
pub unsafe fn handle_in_events(&self, in_: &clap_input_events, current_sample_idx: usize) {
let mut input_events = self.input_events.borrow_mut();
input_events.clear();
let num_events = ((*in_).size)(&*in_);
let mut parameter_values_changed = false;
for event_idx in 0..num_events {
let event = ((*in_).get)(&*in_, event_idx);
parameter_values_changed |=
self.handle_in_event(event, &mut input_events, current_sample_idx);
}
// Allow the GUI to react to any parameter values that might have been changed
if parameter_values_changed {
self.notify_param_values_changed();
}
}
/// Similar to [`handle_in_events()`][Self::handle_in_events()], but will stop just before the
/// next parameter change event with `raw_event.time > current_sample_idx` and return the
/// **absolute** (relative to the entire buffer that's being split) sample index of that event
/// along with the its index in the event queue as a `(sample_idx, event_idx)` tuple. This
/// allows for splitting the audio buffer into segments with distinct sample values to enable
/// sample accurate automation without modifcations to the wrapped plugin.
pub unsafe fn handle_in_events_until_next_param_change(
&self,
in_: &clap_input_events,
current_sample_idx: usize,
resume_from_event_idx: usize,
) -> Option<(usize, usize)> {
let mut input_events = self.input_events.borrow_mut();
input_events.clear();
// To achive this, we'll always read one event ahead
let num_events = ((*in_).size)(&*in_);
if num_events == 0 {
return None;
}
let start_idx = resume_from_event_idx as u32;
let mut event: *const clap_event_header = ((*in_).get)(&*in_, start_idx);
let mut parameter_values_changed = false;
for next_event_idx in (start_idx + 1)..num_events {
parameter_values_changed |=
self.handle_in_event(event, &mut input_events, current_sample_idx);
// Stop just before the next parameter change event at a sample after the current sample
let next_event: *const clap_event_header = ((*in_).get)(&*in_, next_event_idx);
match ((*next_event).space_id, (*next_event).type_) {
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_PARAM_VALUE)
// TODO: Once we add modulation support, don't forget this here
// | (CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_PARAM_MOD)
if (*next_event).time > current_sample_idx as u32 =>
{
return Some(((*next_event).time as usize, next_event_idx as usize));
}
_ => (),
}
event = next_event;
}
// Don't forget about the last event
parameter_values_changed |=
self.handle_in_event(event, &mut input_events, current_sample_idx);
// NOTE: We explicitly did not do this on a block split because that seems a bit excessive.
// When we're performing a block split we're guarenteed that there's still at least one more
// parameter event after the split so this function will still be called.
if parameter_values_changed {
self.notify_param_values_changed();
}
None
}
/// Write the unflushed parameter changes to the host's output event queue. The sample index is
/// used as part of splitting up the input buffer for sample accurate automation changes. This
/// will also modify the actual parameter values, since we should only do that while the wrapped
/// plugin is not actually processing audio.
pub unsafe fn handle_out_events(&self, out: &clap_output_events, current_sample_idx: usize) {
// We'll always write these events to the first sample, so even when we add note output we
// shouldn't have to think about interleaving events here
let sample_rate = self.current_buffer_config.load().map(|c| c.sample_rate);
let mut parameter_values_changed = false;
while let Some(change) = self.output_parameter_events.pop() {
let push_succesful = match change {
OutputParamEvent::BeginGesture { param_hash } => {
let event = clap_event_param_gesture {
header: clap_event_header {
size: mem::size_of::<clap_event_param_gesture>() as u32,
time: current_sample_idx as u32,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_PARAM_GESTURE_BEGIN,
flags: CLAP_EVENT_IS_LIVE,
},
param_id: param_hash,
};
(out.try_push)(out, &event.header)
}
OutputParamEvent::SetValue {
param_hash,
clap_plain_value,
} => {
self.update_plain_value_by_hash(
param_hash,
ClapParamUpdate::PlainValueSet(clap_plain_value),
sample_rate,
);
parameter_values_changed = true;
let event = clap_event_param_value {
header: clap_event_header {
size: mem::size_of::<clap_event_param_value>() as u32,
time: current_sample_idx as u32,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_PARAM_VALUE,
flags: CLAP_EVENT_IS_LIVE,
},
param_id: param_hash,
cookie: ptr::null_mut(),
port_index: -1,
key: -1,
channel: -1,
value: clap_plain_value,
};
(out.try_push)(out, &event.header)
}
OutputParamEvent::EndGesture { param_hash } => {
let event = clap_event_param_gesture {
header: clap_event_header {
size: mem::size_of::<clap_event_param_gesture>() as u32,
time: current_sample_idx as u32,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_PARAM_GESTURE_END,
flags: CLAP_EVENT_IS_LIVE,
},
param_id: param_hash,
};
(out.try_push)(out, &event.header)
}
};
nih_debug_assert!(push_succesful);
}
// Allow the editor to react to the new parameter values if the editor uses a reactive data
// binding model
if parameter_values_changed {
self.notify_param_values_changed();
}
// Also send all note events generated by the plugin
let mut output_events = self.output_events.borrow_mut();
while let Some(event) = output_events.pop_front() {
let time = event.timing() + current_sample_idx as u32;
let push_successful = match event {
NoteEvent::NoteOn {
timing: _,
channel,
note,
velocity,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note {
header: clap_event_header {
size: mem::size_of::<clap_event_note>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_ON,
// We don't have a way to denote live events
flags: 0,
},
port_index: 0,
key: note as i16,
channel: channel as i16,
velocity: velocity as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::NoteOff {
timing: _,
channel,
note,
velocity,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note {
header: clap_event_header {
size: mem::size_of::<clap_event_note>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_OFF,
flags: 0,
},
port_index: 0,
key: note as i16,
channel: channel as i16,
velocity: velocity as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::PolyPressure {
timing: _,
channel,
note,
pressure,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note_expression {
header: clap_event_header {
size: mem::size_of::<clap_event_note_expression>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_EXPRESSION,
flags: 0,
},
expression_id: CLAP_NOTE_EXPRESSION_PRESSURE,
port_index: 0,
key: note as i16,
channel: channel as i16,
value: pressure as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::PolyVolume {
timing: _,
channel,
note,
gain,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note_expression {
header: clap_event_header {
size: mem::size_of::<clap_event_note_expression>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_EXPRESSION,
flags: 0,
},
expression_id: CLAP_NOTE_EXPRESSION_VOLUME,
port_index: 0,
key: note as i16,
channel: channel as i16,
value: gain as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::PolyPan {
timing: _,
channel,
note,
pan,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note_expression {
header: clap_event_header {
size: mem::size_of::<clap_event_note_expression>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_EXPRESSION,
flags: 0,
},
expression_id: CLAP_NOTE_EXPRESSION_PAN,
port_index: 0,
key: note as i16,
channel: channel as i16,
value: (pan as f64 + 1.0) / 2.0,
};
(out.try_push)(out, &event.header)
}
NoteEvent::PolyTuning {
timing: _,
channel,
note,
tuning,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note_expression {
header: clap_event_header {
size: mem::size_of::<clap_event_note_expression>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_EXPRESSION,
flags: 0,
},
expression_id: CLAP_NOTE_EXPRESSION_TUNING,
port_index: 0,
key: note as i16,
channel: channel as i16,
value: tuning as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::PolyVibrato {
timing: _,
channel,
note,
vibrato,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note_expression {
header: clap_event_header {
size: mem::size_of::<clap_event_note_expression>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_EXPRESSION,
flags: 0,
},
expression_id: CLAP_NOTE_EXPRESSION_VIBRATO,
port_index: 0,
key: note as i16,
channel: channel as i16,
value: vibrato as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::PolyExpression {
timing: _,
channel,
note,
expression,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note_expression {
header: clap_event_header {
size: mem::size_of::<clap_event_note_expression>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_EXPRESSION,
flags: 0,
},
expression_id: CLAP_NOTE_EXPRESSION_EXPRESSION,
port_index: 0,
key: note as i16,
channel: channel as i16,
value: expression as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::PolyBrightness {
timing: _,
channel,
note,
brightness,
} if P::MIDI_OUTPUT >= MidiConfig::Basic => {
let event = clap_event_note_expression {
header: clap_event_header {
size: mem::size_of::<clap_event_note_expression>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_NOTE_EXPRESSION,
flags: 0,
},
expression_id: CLAP_NOTE_EXPRESSION_BRIGHTNESS,
port_index: 0,
key: note as i16,
channel: channel as i16,
value: brightness as f64,
};
(out.try_push)(out, &event.header)
}
NoteEvent::MidiChannelPressure {
timing: _,
channel,
pressure,
} if P::MIDI_OUTPUT >= MidiConfig::MidiCCs => {
let event = clap_event_midi {
header: clap_event_header {
size: mem::size_of::<clap_event_midi>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_MIDI,
flags: 0,
},
port_index: 0,
data: [
midi::CHANNEL_KEY_PRESSURE | channel as u8,
(pressure * 127.0).round() as u8,
0,
],
};
(out.try_push)(out, &event.header)
}
NoteEvent::MidiPitchBend {
timing: _,
channel,
value,
} if P::MIDI_OUTPUT >= MidiConfig::MidiCCs => {
let scaled = (value * ((1 << 14) - 1) as f32).round() as i32;
let event = clap_event_midi {
header: clap_event_header {
size: mem::size_of::<clap_event_midi>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_MIDI,
flags: 0,
},
port_index: 0,
data: [
midi::PITCH_BEND_CHANGE | channel as u8,
(scaled & 0b01111111) as u8,
((scaled >> 7) & 0b01111111) as u8,
],
};
(out.try_push)(out, &event.header)
}
NoteEvent::MidiCC {
timing: _,
channel,
cc,
value,
} if P::MIDI_OUTPUT >= MidiConfig::MidiCCs => {
let event = clap_event_midi {
header: clap_event_header {
size: mem::size_of::<clap_event_midi>() as u32,
time,
space_id: CLAP_CORE_EVENT_SPACE_ID,
type_: CLAP_EVENT_MIDI,
flags: 0,
},
port_index: 0,
data: [
midi::CONTROL_CHANGE | channel as u8,
cc,
(value * 127.0).round() as u8,
],
};
(out.try_push)(out, &event.header)
}
_ => {
nih_debug_assert_failure!(
"Invalid output event for the current MIDI_OUTPUT setting"
);
continue;
}
};
nih_debug_assert!(push_successful, "Could not send note event");
}
}
/// Handle an incoming CLAP event. The sample index is provided to support block splitting for
/// sample accurate automation. [`input_events`][Self::input_events] must be cleared at the
/// start of each process block.
///
/// To save on mutex operations when handing MIDI events, the lock guard for the input events
/// need to be passed into this function.
///
/// The return value indicates whether this was a parameter event. If it is a parameter event,
/// then [`notify_param_values_changed()`][Self::notify_param_values_changed()] should be called
/// once all of these events have been processed.
#[must_use]
pub unsafe fn handle_in_event(
&self,
event: *const clap_event_header,
input_events: &mut AtomicRefMut<VecDeque<NoteEvent>>,
current_sample_idx: usize,
) -> bool {
let raw_event = &*event;
match (raw_event.space_id, raw_event.type_) {
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_PARAM_VALUE) => {
let event = &*(event as *const clap_event_param_value);
self.update_plain_value_by_hash(
event.param_id,
ClapParamUpdate::PlainValueSet(event.value),
self.current_buffer_config.load().map(|c| c.sample_rate),
);
true
}
// TODO: At some point we might be able to handle modulation, but that acts as an
// absolute offset for the current value and not just a random relative adjustment
// (CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_PARAM_MOD) => {
// let event = &*(event as *const clap_event_param_mod);
// self.update_plain_value_by_hash(
// event.param_id,
// ClapParamUpdate::PlainValueMod(event.amount),
// self.current_buffer_config.load().map(|c| c.sample_rate),
// );
// true
// }
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_NOTE_ON) => {
if P::MIDI_INPUT >= MidiConfig::Basic {
let event = &*(event as *const clap_event_note);
input_events.push_back(NoteEvent::NoteOn {
// When splitting up the buffer for sample accurate automation all events
// should be relative to the block
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
velocity: event.velocity as f32,
});
}
false
}
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_NOTE_OFF) => {
if P::MIDI_INPUT >= MidiConfig::Basic {
let event = &*(event as *const clap_event_note);
input_events.push_back(NoteEvent::NoteOff {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
velocity: event.velocity as f32,
});
}
false
}
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_NOTE_EXPRESSION) => {
if P::MIDI_INPUT >= MidiConfig::Basic {
// TODO: Add support for the other expression types
let event = &*(event as *const clap_event_note_expression);
match event.expression_id {
CLAP_NOTE_EXPRESSION_PRESSURE => {
input_events.push_back(NoteEvent::PolyPressure {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
pressure: event.value as f32,
});
}
CLAP_NOTE_EXPRESSION_VOLUME => {
input_events.push_back(NoteEvent::PolyVolume {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
gain: event.value as f32,
});
}
CLAP_NOTE_EXPRESSION_PAN => {
input_events.push_back(NoteEvent::PolyPan {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
// In CLAP this value goes from [0, 1] instead of [-1, 1]
pan: (event.value as f32 * 2.0) - 1.0,
});
}
CLAP_NOTE_EXPRESSION_TUNING => {
input_events.push_back(NoteEvent::PolyTuning {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
tuning: event.value as f32,
});
}
CLAP_NOTE_EXPRESSION_VIBRATO => {
input_events.push_back(NoteEvent::PolyVibrato {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
vibrato: event.value as f32,
});
}
CLAP_NOTE_EXPRESSION_EXPRESSION => {
input_events.push_back(NoteEvent::PolyExpression {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
expression: event.value as f32,
});
}
CLAP_NOTE_EXPRESSION_BRIGHTNESS => {
input_events.push_back(NoteEvent::PolyBrightness {
timing: raw_event.time - current_sample_idx as u32,
channel: event.channel as u8,
note: event.key as u8,
brightness: event.value as f32,
});
}
n => nih_debug_assert_failure!("Unhandled note expression ID {}", n),
}
}
false
}
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_MIDI) => {
// TODO: We can also handle note on, note off, and polyphonic pressure events, but
// the host should not be sending us those since we prefer CLAP-style events
// on our note ports
if P::MIDI_INPUT >= MidiConfig::MidiCCs {
let event = &*(event as *const clap_event_midi);
// TODO: Maybe add special handling for 14-bit CCs and RPN messages at some
// point, right now the plugin has to figure it out for itself
let event_type = event.data[0] & midi::EVENT_TYPE_MASK;
let channel = event.data[0] & midi::MIDI_CHANNEL_MASK;
match event_type {
// Hosts shouldn't be sending this, bu twe'll handle it just in case
midi::NOTE_ON => {
input_events.push_back(NoteEvent::NoteOn {
timing: raw_event.time - current_sample_idx as u32,
channel,
note: event.data[1],
velocity: event.data[2] as f32 / 127.0,
});
}
// Hosts shouldn't be sending this, bu twe'll handle it just in case
midi::NOTE_OFF => {
input_events.push_back(NoteEvent::NoteOff {
timing: raw_event.time - current_sample_idx as u32,
channel,
note: event.data[1],
velocity: event.data[2] as f32 / 127.0,
});
}
// Hosts shouldn't be sending this, bu twe'll handle it just in case
midi::POLYPHONIC_KEY_PRESSURE => {
input_events.push_back(NoteEvent::PolyPressure {
timing: raw_event.time - current_sample_idx as u32,
channel,
note: event.data[1],
pressure: event.data[2] as f32 / 127.0,
});
}
midi::CHANNEL_KEY_PRESSURE => {
input_events.push_back(NoteEvent::MidiChannelPressure {
timing: raw_event.time - current_sample_idx as u32,
channel,
pressure: event.data[1] as f32 / 127.0,
});
}
midi::PITCH_BEND_CHANGE => {
input_events.push_back(NoteEvent::MidiPitchBend {
timing: raw_event.time - current_sample_idx as u32,
channel,
value: (event.data[1] as u16 + ((event.data[2] as u16) << 7))
as f32
/ ((1 << 14) - 1) as f32,
});
}
midi::CONTROL_CHANGE => {
input_events.push_back(NoteEvent::MidiCC {
timing: raw_event.time - current_sample_idx as u32,
channel,
cc: event.data[1],
value: event.data[2] as f32 / 127.0,
});
}
n => nih_debug_assert_failure!("Unhandled MIDI message type {}", n),
};
}
false
}
// TODO: Make sure this only gets logged in debug mode
_ => {
nih_log!(
"Unhandled CLAP event type {} for namespace {}",
raw_event.type_,
raw_event.space_id
);
false
}
}
}
/// Get the plugin's state object, may be called by the plugin's GUI as part of its own preset
/// management. The wrapper doesn't use these functions and serializes and deserializes directly
/// the JSON in the relevant plugin API methods instead.
pub fn get_state_object(&self) -> PluginState {
unsafe {
state::serialize_object(
self.params.clone(),
&self.param_by_hash,
&self.param_id_to_hash,
)
}
}
/// Update the plugin's internal state, called by the plugin itself from the GUI thread. To
/// prevent corrupting data and changing parameters during processing the actual state is only
/// updated at the end of the audio processing cycle.
pub fn set_state_object(&self, mut state: PluginState) {
// Use a loop and timeouts to handle the super rare edge case when this function gets called
// between a process call and the host disabling the plugin
loop {
if self.is_processing.load(Ordering::SeqCst) {
// If the plugin is currently processing audio, then we'll perform the restore
// operation at the end of the audio call. This involves sending the state to the
// audio thread, having the audio thread handle the state restore at the very end of
// the process function, and then sending the state back to this thread so it can be
// deallocated without blocking the audio thread.
match self
.updated_state_sender
.send_timeout(state, Duration::from_secs(1))
{
Ok(_) => {
// As mentioned above, the state object will be passed back to this thread
// so we can deallocate it without blocking.
let state = self.updated_state_receiver.recv();
drop(state);
break;
}
Err(SendTimeoutError::Timeout(value)) => {
state = value;
continue;
}
Err(SendTimeoutError::Disconnected(_)) => {
nih_debug_assert_failure!("State update channel got disconnected");
return;
}
}
} else {
// Otherwise we'll set the state right here and now, since this function should be
// called from a GUI thread
unsafe {
state::deserialize_object(
&state,
self.params.clone(),
&self.param_by_hash,
&self.param_id_to_hash,
self.current_buffer_config.load().as_ref(),
);
}
self.notify_param_values_changed();
let bus_config = self.current_bus_config.load();
if let Some(buffer_config) = self.current_buffer_config.load() {
let mut plugin = self.plugin.write();
plugin.initialize(
&bus_config,
&buffer_config,
&mut self.make_process_context(Transport::new(buffer_config.sample_rate)),
);
process_wrapper(|| plugin.reset());
}
break;
}
}
// After the state has been updated, notify the host about the new parameter values
let task_posted = self.do_maybe_async(Task::RescanParamValues);
nih_debug_assert!(task_posted, "The task queue is full, dropping task...");
}
unsafe extern "C" fn init(plugin: *const clap_plugin) -> bool {
check_null_ptr!(false, plugin);
let wrapper = &*(plugin as *const Self);
// We weren't allowed to query these in the constructor, so we need to do it now intead.
*wrapper.host_gui.borrow_mut() =
query_host_extension::<clap_host_gui>(&wrapper.host_callback, CLAP_EXT_GUI);
*wrapper.host_latency.borrow_mut() =
query_host_extension::<clap_host_latency>(&wrapper.host_callback, CLAP_EXT_LATENCY);
*wrapper.host_params.borrow_mut() =
query_host_extension::<clap_host_params>(&wrapper.host_callback, CLAP_EXT_PARAMS);
*wrapper.host_thread_check.borrow_mut() = query_host_extension::<clap_host_thread_check>(
&wrapper.host_callback,
CLAP_EXT_THREAD_CHECK,
);
true
}
unsafe extern "C" fn destroy(plugin: *const clap_plugin) {
Arc::from_raw(plugin as *mut Self);
}
unsafe extern "C" fn activate(
plugin: *const clap_plugin,
sample_rate: f64,
_min_frames_count: u32,
max_frames_count: u32,
) -> bool {
check_null_ptr!(false, plugin);
let wrapper = &*(plugin as *const Self);
let bus_config = wrapper.current_bus_config.load();
let buffer_config = BufferConfig {
sample_rate: sample_rate as f32,
max_buffer_size: max_frames_count,
};
// Befure initializing the plugin, make sure all smoothers are set the the default values
for param in wrapper.param_by_hash.values() {
param.update_smoother(buffer_config.sample_rate, true);
}
let mut plugin = wrapper.plugin.write();
if plugin.initialize(
&bus_config,
&buffer_config,
&mut wrapper.make_process_context(Transport::new(buffer_config.sample_rate)),
) {
// As per-the trait docs we'll always call this after the initialization function
process_wrapper(|| plugin.reset());
// Preallocate enough room in the output slices vector so we can convert a `*mut *mut
// f32` to a `&mut [&mut f32]` in the process call
wrapper
.output_buffer
.borrow_mut()
.with_raw_vec(|output_slices| {
output_slices.resize_with(bus_config.num_output_channels as usize, || &mut [])
});
// Also store this for later, so we can reinitialize the plugin after restoring state
wrapper.current_buffer_config.store(Some(buffer_config));
true
} else {
false
}
}
unsafe extern "C" fn deactivate(_plugin: *const clap_plugin) {
// We currently don't do anything here
}
unsafe extern "C" fn start_processing(plugin: *const clap_plugin) -> bool {
// We just need to keep track of our processing state so we can request a flush when
// updating parameters from the GUI while the processing loop isn't running
check_null_ptr!(false, plugin);
let wrapper = &*(plugin as *const Self);
wrapper.is_processing.store(true, Ordering::SeqCst);
true
}
unsafe extern "C" fn stop_processing(plugin: *const clap_plugin) {
check_null_ptr!((), plugin);
let wrapper = &*(plugin as *const Self);
wrapper.is_processing.store(false, Ordering::SeqCst);
}
unsafe extern "C" fn reset(plugin: *const clap_plugin) {
check_null_ptr!((), plugin);
let wrapper = &*(plugin as *const Self);
process_wrapper(|| wrapper.plugin.write().reset());
}
unsafe extern "C" fn process(
plugin: *const clap_plugin,
process: *const clap_process,
) -> clap_process_status {
check_null_ptr!(CLAP_PROCESS_ERROR, plugin, process);
let wrapper = &*(plugin as *const Self);
// Panic on allocations if the `assert_process_allocs` feature has been enabled, and make
// sure that FTZ is set up correctly
process_wrapper(|| {
// We need to handle incoming automation and MIDI events. Since we don't support sample
// accuration automation yet and there's no way to get the last event for a parameter,
// we'll process every incoming event.
let process = &*process;
// If `P::SAMPLE_ACCURATE_AUTOMATION` is set, then we'll split up the audio buffer into
// chunks whenever a parameter change occurs
let mut block_start = 0;
let mut block_end = process.frames_count as usize;
let mut event_start_idx = 0;
let result = loop {
if !process.in_events.is_null() {
if P::SAMPLE_ACCURATE_AUTOMATION {
let split_result = wrapper.handle_in_events_until_next_param_change(
&*process.in_events,
block_start,
event_start_idx,
);
// If there are any parameter changes after `block_start`, then we'll do a
// new block just after that. Otherwise we can process all audio until the
// end of the buffer.
match split_result {
Some((next_param_change_sample_idx, next_param_change_event_idx)) => {
block_end = next_param_change_sample_idx as usize;
event_start_idx = next_param_change_event_idx as usize;
}
None => block_end = process.frames_count as usize,
}
} else {
wrapper.handle_in_events(&*process.in_events, block_start);
}
}
// The setups we suppport are:
// - 1 input bus
// - 1 output bus
// - 1 input bus and 1 output bus
// - 1 input bus and 1 output bus
//
// Depending on the host either of these may also be missing if the number of
// channels is set to 0.
nih_debug_assert!(
process.audio_inputs_count <= 1 && process.audio_outputs_count <= 1,
"The host provides more than one input or output bus"
);
// Right now we don't handle any auxiliary outputs
// This vector has been preallocated to contain enough slices as there are output
// channels
// TODO: The audio buffers have a latency field, should we use those?
// TODO: Like with VST3, should we expose some way to access or set the silence/constant
// flags?
let mut output_buffer = wrapper.output_buffer.borrow_mut();
output_buffer.with_raw_vec(|output_slices| {
if !process.audio_outputs.is_null()
&& !(*process.audio_outputs).data32.is_null()
{
let audio_outputs = &*process.audio_outputs;
let num_output_channels = audio_outputs.channel_count as usize;
nih_debug_assert_eq!(num_output_channels, output_slices.len());
for (output_channel_idx, output_channel_slice) in
output_slices.iter_mut().enumerate()
{
// If `P::SAMPLE_ACCURATE_AUTOMATION` is set, then we may be iterating over
// the buffer in smaller sections.
// SAFETY: These pointers may not be valid outside of this function even though
// their lifetime is equal to this structs. This is still safe because they are
// only dereferenced here later as part of this process function.
let channel_ptr =
*(audio_outputs.data32 as *mut *mut f32).add(output_channel_idx);
*output_channel_slice = std::slice::from_raw_parts_mut(
channel_ptr.add(block_start),
block_end - block_start,
);
}
}
});
// Some hosts process data in place, in which case we don't need to do any copying
// ourselves. If the pointers do not alias, then we'll do the copy here and then the
// plugin can just do normal in place processing.
if !process.audio_outputs.is_null()
&& !(*process.audio_outputs).data32.is_null()
&& !process.audio_inputs.is_null()
&& !(*process.audio_inputs).data32.is_null()
{
// We currently don't support sidechain inputs
let audio_outputs = &*process.audio_outputs;
let audio_inputs = &*process.audio_inputs;
let num_output_channels = audio_outputs.channel_count as usize;
let num_input_channels = audio_inputs.channel_count as usize;
nih_debug_assert!(
num_input_channels <= num_output_channels,
"Stereo to mono and similar configurations are not supported"
);
for input_channel_idx in 0..cmp::min(num_input_channels, num_output_channels) {
let output_channel_ptr =
*(audio_outputs.data32 as *mut *mut f32).add(input_channel_idx);
let input_channel_ptr = *(audio_inputs.data32).add(input_channel_idx);
if input_channel_ptr != output_channel_ptr {
ptr::copy_nonoverlapping(
input_channel_ptr.add(block_start),
output_channel_ptr.add(block_start),
block_end - block_start,
);
}
}
}
// Some of the fields are left empty because CLAP does not provide this information, but
// the methods on [`Transport`] can reconstruct these values from the other fields
let sample_rate = wrapper
.current_buffer_config
.load()
.expect("Process call without prior initialization call")
.sample_rate;
let mut transport = Transport::new(sample_rate);
if !process.transport.is_null() {
let context = &*process.transport;
transport.playing = context.flags & CLAP_TRANSPORT_IS_PLAYING != 0;
transport.recording = context.flags & CLAP_TRANSPORT_IS_RECORDING != 0;
transport.preroll_active =
Some(context.flags & CLAP_TRANSPORT_IS_WITHIN_PRE_ROLL != 0);
if context.flags & CLAP_TRANSPORT_HAS_TEMPO != 0 {
transport.tempo = Some(context.tempo);
}
if context.flags & CLAP_TRANSPORT_HAS_TIME_SIGNATURE != 0 {
transport.time_sig_numerator = Some(context.tsig_num as i32);
transport.time_sig_denominator = Some(context.tsig_denom as i32);
}
if context.flags & CLAP_TRANSPORT_HAS_BEATS_TIMELINE != 0 {
let beats = context.song_pos_beats as f64 / CLAP_BEATTIME_FACTOR as f64;
// This is a bit messy, but we'll try to compensate for the block splitting.
// We can't use the functions on the transport information object for this
// because we don't have any sample information.
if P::SAMPLE_ACCURATE_AUTOMATION
&& block_start > 0
&& (context.flags & CLAP_TRANSPORT_HAS_TEMPO != 0)
{
transport.pos_beats = Some(
beats
+ (block_start as f64 / sample_rate as f64 / 60.0
* context.tempo),
);
} else {
transport.pos_beats = Some(beats);
}
}
if context.flags & CLAP_TRANSPORT_HAS_SECONDS_TIMELINE != 0 {
let seconds = context.song_pos_seconds as f64 / CLAP_SECTIME_FACTOR as f64;
// Same here
if P::SAMPLE_ACCURATE_AUTOMATION
&& block_start > 0
&& (context.flags & CLAP_TRANSPORT_HAS_TEMPO != 0)
{
transport.pos_seconds =
Some(seconds + (block_start as f64 / sample_rate as f64));
} else {
transport.pos_seconds = Some(seconds);
}
}
// TODO: CLAP does not mention whether this is behind a flag or not
if P::SAMPLE_ACCURATE_AUTOMATION && block_start > 0 {
transport.bar_start_pos_beats = match transport.bar_start_pos_beats() {
Some(updated) => Some(updated),
None => Some(context.bar_start as f64 / CLAP_BEATTIME_FACTOR as f64),
};
transport.bar_number = match transport.bar_number() {
Some(updated) => Some(updated),
None => Some(context.bar_number),
};
} else {
transport.bar_start_pos_beats =
Some(context.bar_start as f64 / CLAP_BEATTIME_FACTOR as f64);
transport.bar_number = Some(context.bar_number);
}
// TODO: They also aren't very clear about this, but presumably if the loop is
// active and the corresponding song transport information is available then
// this is also available
if context.flags & CLAP_TRANSPORT_IS_LOOP_ACTIVE != 0
&& context.flags & CLAP_TRANSPORT_HAS_BEATS_TIMELINE != 0
{
transport.loop_range_beats = Some((
context.loop_start_beats as f64 / CLAP_BEATTIME_FACTOR as f64,
context.loop_end_beats as f64 / CLAP_BEATTIME_FACTOR as f64,
));
}
if context.flags & CLAP_TRANSPORT_IS_LOOP_ACTIVE != 0
&& context.flags & CLAP_TRANSPORT_HAS_SECONDS_TIMELINE != 0
{
transport.loop_range_seconds = Some((
context.loop_start_seconds as f64 / CLAP_SECTIME_FACTOR as f64,
context.loop_end_seconds as f64 / CLAP_SECTIME_FACTOR as f64,
));
}
}
let result = {
let mut plugin = wrapper.plugin.write();
let mut context = wrapper.make_process_context(transport);
let result = plugin.process(&mut output_buffer, &mut context);
wrapper.last_process_status.store(result);
result
};
let clap_result = match result {
ProcessStatus::Error(err) => {
nih_debug_assert_failure!("Process error: {}", err);
return CLAP_PROCESS_ERROR;
}
ProcessStatus::Normal => CLAP_PROCESS_CONTINUE_IF_NOT_QUIET,
ProcessStatus::Tail(_) => CLAP_PROCESS_CONTINUE,
ProcessStatus::KeepAlive => CLAP_PROCESS_CONTINUE,
};
// After processing audio, send all spooled events to the host. This include note
// events.
if !process.out_events.is_null() {
wrapper.handle_out_events(&*process.out_events, block_start);
}
// If our block ends at the end of the buffer then that means there are no more
// unprocessed (parameter) events. If there are more events, we'll just keep going
// through this process until we've processed the entire buffer.
if block_end as u32 == process.frames_count {
break clap_result;
} else {
block_start = block_end;
}
};
// After processing audio, we'll check if the editor has sent us updated plugin state.
// We'll restore that here on the audio thread to prevent changing the values during the
// process call and also to prevent inconsistent state when the host also wants to load
// plugin state.
// FIXME: Zero capacity channels allocate on receiving, find a better alternative that
// doesn't do that
let updated_state = permit_alloc(|| wrapper.updated_state_receiver.try_recv());
if let Ok(state) = updated_state {
state::deserialize_object(
&state,
wrapper.params.clone(),
&wrapper.param_by_hash,
&wrapper.param_id_to_hash,
wrapper.current_buffer_config.load().as_ref(),
);
wrapper.notify_param_values_changed();
// TODO: Normally we'd also call initialize after deserializing state, but that's
// not guaranteed to be realtime safe. Should we do it anyways?
let mut plugin = wrapper.plugin.write();
plugin.reset();
// We'll pass the state object back to the GUI thread so deallocation can happen
// there without potentially blocking the audio thread
if let Err(err) = wrapper.updated_state_sender.send(state) {
nih_debug_assert_failure!(
"Failed to send state object back to GUI thread: {}",
err
);
};
}
result
})
}
unsafe extern "C" fn get_extension(
plugin: *const clap_plugin,
id: *const c_char,
) -> *const c_void {
check_null_ptr!(ptr::null(), plugin, id);
let wrapper = &*(plugin as *const Self);
let id = CStr::from_ptr(id);
if id == CStr::from_ptr(CLAP_EXT_AUDIO_PORTS_CONFIG) {
&wrapper.clap_plugin_audio_ports_config as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_AUDIO_PORTS) {
&wrapper.clap_plugin_audio_ports as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_EVENT_FILTER) {
&wrapper.clap_plugin_event_filter as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_GUI) && wrapper.editor.is_some() {
// Only report that we support this extension if the plugin has an editor
&wrapper.clap_plugin_gui as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_LATENCY) {
&wrapper.clap_plugin_latency as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_NOTE_PORTS) && P::MIDI_INPUT >= MidiConfig::Basic {
&wrapper.clap_plugin_note_ports as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_PARAMS) {
&wrapper.clap_plugin_params as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_STATE) {
&wrapper.clap_plugin_state as *const _ as *const c_void
} else if id == CStr::from_ptr(CLAP_EXT_TAIL) {
&wrapper.clap_plugin_tail as *const _ as *const c_void
} else {
nih_log!("Host tried to query unknown extension {:?}", id);
ptr::null()
}
}
unsafe extern "C" fn on_main_thread(plugin: *const clap_plugin) {
check_null_ptr!((), plugin);
let wrapper = &*(plugin as *const Self);
// [Self::do_maybe_async] posts a task to the queue and asks the host to call this function
// on the main thread, so once that's done we can just handle all requests here
while let Some(task) = wrapper.tasks.pop() {
wrapper.execute(task);
}
}
unsafe extern "C" fn ext_audio_ports_config_count(plugin: *const clap_plugin) -> u32 {
check_null_ptr!(0, plugin);
let wrapper = &*(plugin as *const Self);
wrapper.supported_bus_configs.len() as u32
}
unsafe extern "C" fn ext_audio_ports_config_get(
plugin: *const clap_plugin,
index: u32,
config: *mut clap_audio_ports_config,
) -> bool {
check_null_ptr!(false, plugin, config);
let wrapper = &*(plugin as *const Self);
match wrapper.supported_bus_configs.get(index as usize) {
Some(bus_config) => {
let name = match bus_config {
BusConfig {
num_input_channels: _,
num_output_channels: 1,
} => String::from("Mono"),
BusConfig {
num_input_channels: _,
num_output_channels: 2,
} => String::from("Stereo"),
BusConfig {
num_input_channels,
num_output_channels,
} => format!("{num_input_channels} inputs, {num_output_channels} outputs"),
};
let input_port_type = match bus_config.num_input_channels {
1 => CLAP_PORT_MONO,
2 => CLAP_PORT_STEREO,
_ => ptr::null(),
};
let output_port_type = match bus_config.num_output_channels {
1 => CLAP_PORT_MONO,
2 => CLAP_PORT_STEREO,
_ => ptr::null(),
};
*config = std::mem::zeroed();
let config = &mut *config;
config.id = index;
strlcpy(&mut config.name, &name);
// TODO: Currently we don't support sidechain inputs or multiple outputs
config.input_port_count = if bus_config.num_input_channels > 0 {
1
} else {
0
};
config.output_port_count = if bus_config.num_output_channels > 0 {
1
} else {
0
};
config.has_main_input_channel = bus_config.num_output_channels > 0;
config.main_input_channel_count = bus_config.num_output_channels;
config.main_input_port_type = input_port_type;
config.has_main_output_channel = bus_config.num_output_channels > 0;
config.main_output_channel_count = bus_config.num_output_channels;
config.main_output_port_type = output_port_type;
true
}
None => {
nih_debug_assert_failure!(
"Host tried to query out of bounds audio port config {}",
index
);
false
}
}
}
unsafe extern "C" fn ext_audio_ports_config_select(
plugin: *const clap_plugin,
config_id: clap_id,
) -> bool {
check_null_ptr!(false, plugin);
let wrapper = &*(plugin as *const Self);
// We use the vector indices for the config ID
match wrapper.supported_bus_configs.get(config_id as usize) {
Some(bus_config) => {
wrapper.current_bus_config.store(*bus_config);
true
}
None => {
nih_debug_assert_failure!(
"Host tried to select out of bounds audio port config {}",
config_id
);
false
}
}
}
unsafe extern "C" fn ext_audio_ports_count(plugin: *const clap_plugin, is_input: bool) -> u32 {
// TODO: Implement sidechain nputs and auxiliary outputs
check_null_ptr!(0, plugin);
let wrapper = &*(plugin as *const Self);
let bus_config = wrapper.current_bus_config.load();
match (
is_input,
bus_config.num_input_channels,
bus_config.num_output_channels,
) {
(true, 0, _) => 0,
// This should not be possible, however
(false, _, 0) => 0,
_ => 1,
}
}
unsafe extern "C" fn ext_audio_ports_get(
plugin: *const clap_plugin,
index: u32,
is_input: bool,
info: *mut clap_audio_port_info,
) -> bool {
check_null_ptr!(false, plugin, info);
let wrapper = &*(plugin as *const Self);
const INPUT_ID: u32 = 0;
const OUTPUT_ID: u32 = 1;
// Even if we don't report having ports when the number of channels are 0, might as well
// handle them here anyways in case we do need to always report them in the future
match index {
0 => {
let current_bus_config = wrapper.current_bus_config.load();
let channel_count = if is_input {
current_bus_config.num_input_channels
} else {
current_bus_config.num_output_channels
};
// When we add sidechain inputs and auxiliary outputs this would need some changing
let stable_id = if is_input { INPUT_ID } else { OUTPUT_ID };
let pair_stable_id = if is_input && current_bus_config.num_output_channels > 0 {
OUTPUT_ID
} else if !is_input && current_bus_config.num_input_channels > 0 {
INPUT_ID
} else {
CLAP_INVALID_ID
};
let port_type_name = if is_input { "Input" } else { "Output" };
let name = match channel_count {
1 => format!("Mono {port_type_name}"),
2 => format!("Stereo {port_type_name}"),
n => format!("{n} channel {port_type_name}"),
};
let port_type = match channel_count {
1 => CLAP_PORT_MONO,
2 => CLAP_PORT_STEREO,
_ => ptr::null(),
};
*info = std::mem::zeroed();
let info = &mut *info;
info.id = stable_id;
strlcpy(&mut info.name, &name);
info.flags = CLAP_AUDIO_PORT_IS_MAIN;
info.channel_count = channel_count;
info.port_type = port_type;
info.in_place_pair = pair_stable_id;
true
}
_ => {
nih_debug_assert_failure!(
"Host tried to query information for out of bounds audio port {} (input: {})",
index,
is_input
);
false
}
}
}
unsafe extern "C" fn ext_event_filter_accepts(
_plugin: *const clap_plugin,
space_id: u16,
event_type: clap_event_type,
) -> bool {
match (space_id, event_type) {
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_PARAM_VALUE) => true,
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_NOTE_ON)
| (CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_NOTE_OFF)
| (CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_NOTE_EXPRESSION)
if P::MIDI_INPUT >= MidiConfig::Basic =>
{
true
}
(CLAP_CORE_EVENT_SPACE_ID, CLAP_EVENT_MIDI) if P::MIDI_INPUT >= MidiConfig::MidiCCs => {
true
}
_ => false,
}
}
unsafe extern "C" fn ext_gui_is_api_supported(
_plugin: *const clap_plugin,
api: *const c_char,
is_floating: bool,
) -> bool {
// We don't do standalone floating windows
if is_floating {
return false;
}
#[cfg(all(target_family = "unix", not(target_os = "macos")))]
if CStr::from_ptr(api) == CStr::from_ptr(CLAP_WINDOW_API_X11) {
return true;
}
#[cfg(target_os = "macos")]
if CStr::from_ptr(api) == CStr::from_ptr(CLAP_WINDOW_API_COCOA) {
return true;
}
#[cfg(target_os = "windows")]
if CStr::from_ptr(api) == CStr::from_ptr(CLAP_WINDOW_API_WIN32) {
return true;
}
false
}
unsafe extern "C" fn ext_gui_get_preferred_api(
_plugin: *const clap_plugin,
api: *mut *const c_char,
is_floating: *mut bool,
) -> bool {
check_null_ptr!(false, api, is_floating);
#[cfg(all(target_family = "unix", not(target_os = "macos")))]
{
*api = CLAP_WINDOW_API_X11;
}
#[cfg(target_os = "macos")]
{
*api = CLAP_WINDOW_API_COCOA;
}
#[cfg(target_os = "windows")]
{
*api = CLAP_WINDOW_API_WIN32;
}
// We don't do standalone floating windows yet
*is_floating = false;
true
}
unsafe extern "C" fn ext_gui_create(
plugin: *const clap_plugin,
api: *const c_char,
is_floating: bool,
) -> bool {
// Double check this in case the host didn't
if !Self::ext_gui_is_api_supported(plugin, api, is_floating) {
return false;
}
// In CLAP creating the editor window and embedding it in another window are separate, and
// those things are one and the same in our framework. So we'll just pretend we did
// something here.
check_null_ptr!(false, plugin);
let wrapper = &*(plugin as *const Self);
let editor_handle = wrapper.editor_handle.read();
if editor_handle.is_none() {
true
} else {
nih_debug_assert_failure!("Tried creating editor while the editor was already active");
false
}
}
unsafe extern "C" fn ext_gui_destroy(plugin: *const clap_plugin) {
check_null_ptr!((), plugin);
let wrapper = &*(plugin as *const Self);
let mut editor_handle = wrapper.editor_handle.write();
if editor_handle.is_some() {
*editor_handle = None;
} else {
nih_debug_assert_failure!("Tried destroying editor while the editor was not active");
}
}
unsafe extern "C" fn ext_gui_set_scale(plugin: *const clap_plugin, scale: f64) -> bool {
check_null_ptr!(false, plugin);
let wrapper = &*(plugin as *const Self);
// On macOS scaling is done by the OS, and all window sizes are in logical pixels
if cfg!(target_os = "macos") {
nih_debug_assert_failure!("Ignoring host request to set explicit DPI scaling factor");
return false;
}
if wrapper
.editor
.as_ref()
.unwrap()
.set_scale_factor(scale as f32)
{
wrapper
.editor_scaling_factor
.store(scale as f32, std::sync::atomic::Ordering::Relaxed);
true
} else {
false
}
}
unsafe extern "C" fn ext_gui_get_size(
plugin: *const clap_plugin,
width: *mut u32,
height: *mut u32,
) -> bool {
check_null_ptr!(false, plugin, width, height);
let wrapper = &*(plugin as *const Self);
// For macOS the scaling factor is always 1
let (unscaled_width, unscaled_height) = wrapper.editor.as_ref().unwrap().size();
let scaling_factor = wrapper.editor_scaling_factor.load(Ordering::Relaxed);
(*width, *height) = (
(unscaled_width as f32 * scaling_factor).round() as u32,
(unscaled_height as f32 * scaling_factor).round() as u32,
);
true
}
unsafe extern "C" fn ext_gui_can_resize(_plugin: *const clap_plugin) -> bool {
// TODO: Implement Host->Plugin GUI resizing
false
}
unsafe extern "C" fn ext_gui_get_resize_hints(
_plugin: *const clap_plugin,
_hints: *mut clap_gui_resize_hints,
) -> bool {
// TODO: Implement Host->Plugin GUI resizing
false
}
unsafe extern "C" fn ext_gui_adjust_size(
_plugin: *const clap_plugin,
_width: *mut u32,
_height: *mut u32,
) -> bool {
// TODO: Implement Host->Plugin GUI resizing
false
}
unsafe extern "C" fn ext_gui_set_size(
plugin: *const clap_plugin,
width: u32,
height: u32,
) -> bool {
// TODO: Implement Host->Plugin GUI resizing
// TODO: The host will also call this if an asynchronous (on Linux) resize request fails
check_null_ptr!(false, plugin);
let wrapper = &*(plugin as *const Self);
let (unscaled_width, unscaled_height) = wrapper.editor.as_ref().unwrap().size();
let scaling_factor = wrapper.editor_scaling_factor.load(Ordering::Relaxed);
let (editor_width, editor_height) = (
(unscaled_width as f32 * scaling_factor).round() as u32,
(unscaled_height as f32 * scaling_factor).round() as u32,
);
width == editor_width && height == editor_height
}
unsafe extern "C" fn ext_gui_set_parent(
plugin: *const clap_plugin,
window: *const clap_window,
) -> bool {
check_null_ptr!(false, plugin, window);
// For this function we need the underlying Arc so we can pass it to the editor
let wrapper = Arc::from_raw(plugin as *const Self);
let window = &*window;
let result = {
let mut editor_handle = wrapper.editor_handle.write();
if editor_handle.is_none() {
let api = CStr::from_ptr(window.api);
let handle = if api == CStr::from_ptr(CLAP_WINDOW_API_X11) {
let mut handle = raw_window_handle::XcbHandle::empty();
handle.window = window.specific.x11 as u32;
RawWindowHandle::Xcb(handle)
} else if api == CStr::from_ptr(CLAP_WINDOW_API_COCOA) {
let mut handle = raw_window_handle::AppKitHandle::empty();
handle.ns_view = window.specific.cocoa;
RawWindowHandle::AppKit(handle)
} else if api == CStr::from_ptr(CLAP_WINDOW_API_WIN32) {
let mut handle = raw_window_handle::Win32Handle::empty();
handle.hwnd = window.specific.win32;
RawWindowHandle::Win32(handle)
} else {
nih_debug_assert_failure!("Host passed an invalid API");
return false;
};
// This extension is only exposed when we have an editor
*editor_handle = Some(wrapper.editor.as_ref().unwrap().spawn(
ParentWindowHandle { handle },
wrapper.clone().make_gui_context(),
));
true
} else {
nih_debug_assert_failure!(
"Host tried to attach editor while the editor is already attached"
);
false
}
};
// Leak the Arc again since we only needed a clone to pass to the GuiContext
let _ = Arc::into_raw(wrapper);
result
}
unsafe extern "C" fn ext_gui_set_transient(
_plugin: *const clap_plugin,
_window: *const clap_window,
) -> bool {
// This is only relevant for floating windows
false
}
unsafe extern "C" fn ext_gui_suggest_title(_plugin: *const clap_plugin, _title: *const c_char) {
// This is only relevant for floating windows
}
unsafe extern "C" fn ext_gui_show(_plugin: *const clap_plugin) -> bool {
// TODO: Does this get used? Is this only for the free-standing window extension? (which we
// don't implement) This wouldn't make any sense for embedded editors.
false
}
unsafe extern "C" fn ext_gui_hide(_plugin: *const clap_plugin) -> bool {
// TODO: Same as the above
false
}
unsafe extern "C" fn ext_latency_get(plugin: *const clap_plugin) -> u32 {
check_null_ptr!(0, plugin);
let wrapper = &*(plugin as *const Self);
wrapper.current_latency.load(Ordering::SeqCst)
}
unsafe extern "C" fn ext_note_ports_count(_plugin: *const clap_plugin, is_input: bool) -> u32 {
// TODO: Outputting notes
match is_input {
true if P::MIDI_INPUT >= MidiConfig::Basic => 1,
false if P::MIDI_OUTPUT >= MidiConfig::Basic => 1,
_ => 0,
}
}
unsafe extern "C" fn ext_note_ports_get(
_plugin: *const clap_plugin,
index: u32,
is_input: bool,
info: *mut clap_note_port_info,
) -> bool {
match (index, is_input) {
(0, true) if P::MIDI_INPUT >= MidiConfig::Basic => {
*info = std::mem::zeroed();
let info = &mut *info;
info.id = 0;
// TODO: Implement MPE (would just be a toggle for the plugin to expose it) and MIDI2
info.supported_dialects = CLAP_NOTE_DIALECT_CLAP;
if P::MIDI_INPUT >= MidiConfig::MidiCCs {
info.supported_dialects |= CLAP_NOTE_DIALECT_MIDI;
}
info.preferred_dialect = CLAP_NOTE_DIALECT_CLAP;
strlcpy(&mut info.name, "Note Input");
true
}
(0, false) if P::MIDI_OUTPUT >= MidiConfig::Basic => {
*info = std::mem::zeroed();
let info = &mut *info;
info.id = 0;
info.supported_dialects = CLAP_NOTE_DIALECT_CLAP;
if P::MIDI_OUTPUT >= MidiConfig::MidiCCs {
info.supported_dialects |= CLAP_NOTE_DIALECT_MIDI;
}
info.preferred_dialect = CLAP_NOTE_DIALECT_CLAP;
strlcpy(&mut info.name, "Note Output");
true
}
_ => false,
}
}
unsafe extern "C" fn ext_params_count(plugin: *const clap_plugin) -> u32 {
check_null_ptr!(0, plugin);
let wrapper = &*(plugin as *const Self);
wrapper.param_hashes.len() as u32
}
unsafe extern "C" fn ext_params_get_info(
plugin: *const clap_plugin,
param_index: u32,
param_info: *mut clap_param_info,
) -> bool {
check_null_ptr!(false, plugin, param_info);
let wrapper = &*(plugin as *const Self);
if param_index > Self::ext_params_count(plugin) {
return false;
}
let param_hash = &wrapper.param_hashes[param_index as usize];
let param_group = &wrapper.param_group_by_hash[param_hash];
let param_ptr = &wrapper.param_by_hash[param_hash];
let default_value = param_ptr.default_normalized_value();
let step_count = param_ptr.step_count();
let flags = param_ptr.flags();
let automatable = !flags.contains(ParamFlags::NON_AUTOMATABLE);
let is_bypass = flags.contains(ParamFlags::BYPASS);
*param_info = std::mem::zeroed();
// TODO: We don't use the cookies at this point. In theory this would be faster than the ID
// hashmap lookup, but for now we'll stay consistent with the VST3 implementation.
let param_info = &mut *param_info;
param_info.id = *param_hash;
// TODO: Somehow expose modulation and per note/channel/port variations
param_info.flags = if automatable {
CLAP_PARAM_IS_AUTOMATABLE
} else {
CLAP_PARAM_IS_HIDDEN | CLAP_PARAM_IS_READONLY
};
if is_bypass {
param_info.flags |= CLAP_PARAM_IS_BYPASS
}
if step_count.is_some() {
param_info.flags |= CLAP_PARAM_IS_STEPPED
}
param_info.cookie = ptr::null_mut();
strlcpy(&mut param_info.name, param_ptr.name());
strlcpy(&mut param_info.module, param_group);
// We don't use the actual minimum and maximum values here because that would not scale
// with skewed integer ranges. Instead, just treat all parameters as `[0, 1]` normalized
// paramters multiplied by the step size.
param_info.min_value = 0.0;
// Stepped parameters are unnormalized float parameters since there's no separate step
// range option
// TODO: This should probably be encapsulated in some way so we don't forget about this in one place
param_info.max_value = step_count.unwrap_or(1) as f64;
param_info.default_value = default_value as f64 * step_count.unwrap_or(1) as f64;
true
}
unsafe extern "C" fn ext_params_get_value(
plugin: *const clap_plugin,
param_id: clap_id,
value: *mut f64,
) -> bool {
check_null_ptr!(false, plugin, value);
let wrapper = &*(plugin as *const Self);
match wrapper.param_by_hash.get(&param_id) {
Some(param_ptr) => {
*value = param_ptr.normalized_value() as f64
* param_ptr.step_count().unwrap_or(1) as f64;
true
}
_ => false,
}
}
unsafe extern "C" fn ext_params_value_to_text(
plugin: *const clap_plugin,
param_id: clap_id,
value: f64,
display: *mut c_char,
size: u32,
) -> bool {
check_null_ptr!(false, plugin, display);
let wrapper = &*(plugin as *const Self);
let dest = std::slice::from_raw_parts_mut(display, size as usize);
match wrapper.param_by_hash.get(&param_id) {
Some(param_ptr) => {
strlcpy(
dest,
// CLAP does not have a separate unit, so we'll include the unit here
&param_ptr.normalized_value_to_string(
value as f32 / param_ptr.step_count().unwrap_or(1) as f32,
true,
),
);
true
}
_ => false,
}
}
unsafe extern "C" fn ext_params_text_to_value(
plugin: *const clap_plugin,
param_id: clap_id,
display: *const c_char,
value: *mut f64,
) -> bool {
check_null_ptr!(false, plugin, display, value);
let wrapper = &*(plugin as *const Self);
let display = match CStr::from_ptr(display).to_str() {
Ok(s) => s,
Err(_) => return false,
};
match wrapper.param_by_hash.get(&param_id) {
Some(param_ptr) => {
let normalized_value = match param_ptr.string_to_normalized_value(display) {
Some(v) => v as f64,
None => return false,
};
*value = normalized_value * param_ptr.step_count().unwrap_or(1) as f64;
true
}
_ => false,
}
}
unsafe extern "C" fn ext_params_flush(
plugin: *const clap_plugin,
in_: *const clap_input_events,
out: *const clap_output_events,
) {
check_null_ptr!((), plugin);
let wrapper = &*(plugin as *const Self);
if !in_.is_null() {
wrapper.handle_in_events(&*in_, 0);
}
if !out.is_null() {
wrapper.handle_out_events(&*out, 0);
}
}
unsafe extern "C" fn ext_state_save(
plugin: *const clap_plugin,
stream: *const clap_ostream,
) -> bool {
check_null_ptr!(false, plugin, stream);
let wrapper = &*(plugin as *const Self);
let serialized = state::serialize_json(
wrapper.params.clone(),
&wrapper.param_by_hash,
&wrapper.param_id_to_hash,
);
match serialized {
Ok(serialized) => {
// CLAP does not provide a way to tell how much data there is left in a stream, so
// we need to prepend it to our actual state data.
let length_bytes = (serialized.len() as u64).to_le_bytes();
let num_length_bytes_written = ((*stream).write)(
stream,
length_bytes.as_ptr() as *const c_void,
length_bytes.len() as u64,
);
let num_bytes_written = ((*stream).write)(
stream,
serialized.as_ptr() as *const c_void,
serialized.len() as u64,
);
nih_debug_assert_eq!(num_length_bytes_written as usize, length_bytes.len());
nih_debug_assert_eq!(num_bytes_written as usize, serialized.len());
true
}
Err(err) => {
nih_debug_assert_failure!("Could not save state: {}", err);
false
}
}
}
unsafe extern "C" fn ext_state_load(
plugin: *const clap_plugin,
stream: *const clap_istream,
) -> bool {
check_null_ptr!(false, plugin, stream);
let wrapper = &*(plugin as *const Self);
// CLAP does not have a way to tell how much data there is left in a stream, so we've
// prepended the size in front of our JSON state
let mut length_bytes = [0; 8];
let num_length_bytes_read = ((*stream).read)(
stream,
length_bytes.as_mut_ptr() as *mut c_void,
length_bytes.len() as u64,
);
nih_debug_assert_eq!(num_length_bytes_read as usize, length_bytes.len());
let length = u64::from_le_bytes(length_bytes);
let mut read_buffer: Vec<u8> = Vec::with_capacity(length as usize);
let num_bytes_read = ((*stream).read)(
stream,
read_buffer.as_mut_ptr() as *mut c_void,
length as u64,
);
nih_debug_assert_eq!(num_bytes_read as u64, length);
read_buffer.set_len(length as usize);
let success = state::deserialize_json(
&read_buffer,
wrapper.params.clone(),
&wrapper.param_by_hash,
&wrapper.param_id_to_hash,
wrapper.current_buffer_config.load().as_ref(),
);
if !success {
return false;
}
// Reinitialize the plugin after loading state so it can respond to the new parameter values
wrapper.notify_param_values_changed();
let bus_config = wrapper.current_bus_config.load();
if let Some(buffer_config) = wrapper.current_buffer_config.load() {
let mut plugin = wrapper.plugin.write();
plugin.initialize(
&bus_config,
&buffer_config,
&mut wrapper.make_process_context(Transport::new(buffer_config.sample_rate)),
);
process_wrapper(|| plugin.reset());
}
true
}
unsafe extern "C" fn ext_tail_get(plugin: *const clap_plugin) -> u32 {
check_null_ptr!(0, plugin);
let wrapper = &*(plugin as *const Self);
match wrapper.last_process_status.load() {
ProcessStatus::Tail(samples) => samples,
ProcessStatus::KeepAlive => u32::MAX,
_ => 0,
}
}
}
/// Convenience function to query an extennsion from the host.
///
/// # Safety
///
/// The extension type `T` must match the extension's name `name`.
unsafe fn query_host_extension<T>(
host_callback: &ClapPtr<clap_host>,
name: *const c_char,
) -> Option<ClapPtr<T>> {
let extension_ptr = (host_callback.get_extension)(&**host_callback, name);
if !extension_ptr.is_null() {
Some(ClapPtr::new(extension_ptr as *const T))
} else {
None
}
}