1
0
Fork 0
nih-plug/plugins/safety_limiter/src/lib.rs
Robbert van der Helm c566888fa3 💥 Use interior mutability for parameters
Instead of the previous technically-unsound approach. While it wouldn't
cause any issues in practice, it did break Rust's guarantees. That was a
design choice after adding support for editors in NIH-plug, but this is
probably the better long term solution.

The downside is that all uses of `param.value` now need to be changed to
`param.value()`.
2022-09-06 21:57:24 +02:00

324 lines
12 KiB
Rust

// Safety limiter: ear protection for the 21st century
// Copyright (C) 2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use nih_plug::prelude::*;
use std::sync::Arc;
/// After reaching the threshold, it will take this many milliseconds under that threshold to start
/// fading back to the normal signal. Peaking above the threshold again during this time resets
/// this. The fadeout doesn't start immediately since that would add some nasty distortion when most
/// but not all samples pass the threshold.
const MORSE_FADEOUT_START_MS: f32 = 500.0;
/// The Morse fadeout ends after this many milliseconds.
const MORSE_FADEOUT_END_MS: f32 = MORSE_FADEOUT_START_MS + 1500.0;
/// The frequency of the sine wave used for the SOS signal.
const MORSE_FREQUENCY: f32 = 420.0;
/// The four second SOS morse code sequence. Each element here represents an edge where the signal
/// is either turned on or off. The first element of each tuple is the time in milliseconds into the
/// sequence, while the second element is the new gate status at that time point. The last element
/// acts as a delay before wrapping around, and it is equivalent to the 0 position in the next cycle
/// (hence why it is set to true).
const MORSE_SEQ_EDGES_MS: [(u32, bool); 19] = [
// S, 3*100 ms + 2*100ms spacing
(0, true),
(100, false),
(200, true),
(300, false),
(400, true),
// 500 ms silence
(500, false),
//
// O, 3*200 ms + 2*100ms spacing
(1000, true),
(1200, false),
(1400, true),
(1600, false),
(1800, true),
// 500 ms silence
(2000, false),
//
// S, 3*100 ms + 2*100ms spacing
(2500, true),
(2600, false),
(2700, true),
(2800, false),
(2900, true),
// 1000 ms silence
(3000, false),
// Acts as a delay at the end before the sequence loops. This sample 4000 behaves like an alias
// for sample 0 in the next cycle.
(4000, true),
];
struct SafetyLimiter {
params: Arc<SafetyLimiterParams>,
buffer_config: BufferConfig,
/// `MORSE_FADEOUT_START_MS` translated into samples.
morse_fadeout_samples_start: u32,
/// `MORSE_FADEOUT_END_MS` translated into samples.
morse_fadeout_samples_end: u32,
/// `MORSE_SEQ_EDGES_MS` translated into samples.
morse_seq_edges_samples: [(u32, bool); 19],
/// The number of samples into the fadeout. This resets back to 0 whenever the signal peaks
/// above the threshold.
morse_fadeout_samples_current: u32,
/// The index of the current step into `morse_seq_edges_samples`. This wraps around to zero when
/// reaching the end of the sequence. This is only reset once the fadeout is fully finished.
morse_seq_current_step_idx: usize,
/// The index of the current sample in the morse code qeuence. This wraps around to zero when
/// reaching the end of the sequence. This is only reset once the fadeout is fully finished.
morse_seq_current_sample_idx: u32,
/// The phase of the Morse code sine oscillator. This runs from zero to `2 * pi` for
/// efficiency's sake.
osc_phase_tau: f32,
/// The phase increment for every sample. This can be precomputed since the frequency is fixed.
osc_phase_tau_dt: f32,
}
#[derive(Params)]
struct SafetyLimiterParams {
/// The level at which to start engaging the safety limiter. Stored as a gain ratio instead of
/// decibels.
#[id = "threshold"]
threshold_gain: FloatParam,
}
impl Default for SafetyLimiterParams {
fn default() -> Self {
Self {
threshold_gain: FloatParam::new(
"Threshold",
util::db_to_gain(0.00),
FloatRange::Skewed {
min: util::db_to_gain(-24.0),
max: util::db_to_gain(12.0),
factor: FloatRange::gain_skew_factor(-24.0, 12.0),
},
)
.with_unit(" dB")
.with_value_to_string(formatters::v2s_f32_gain_to_db(2))
.with_string_to_value(formatters::s2v_f32_gain_to_db()),
}
}
}
impl Default for SafetyLimiter {
fn default() -> Self {
SafetyLimiter {
params: Arc::new(SafetyLimiterParams::default()),
buffer_config: BufferConfig {
sample_rate: 1.0,
min_buffer_size: None,
max_buffer_size: 0,
process_mode: ProcessMode::Realtime,
},
morse_fadeout_samples_start: 0,
morse_fadeout_samples_end: 0,
morse_seq_edges_samples: [(0, false); 19],
morse_fadeout_samples_current: 0,
morse_seq_current_sample_idx: 0,
morse_seq_current_step_idx: 0,
osc_phase_tau: 0.0,
osc_phase_tau_dt: 0.0,
}
}
}
impl Plugin for SafetyLimiter {
const NAME: &'static str = "Safety Limiter";
const VENDOR: &'static str = "Robbert van der Helm";
const URL: &'static str = "https://github.com/robbert-vdh/nih-plug";
const EMAIL: &'static str = "mail@robbertvanderhelm.nl";
const VERSION: &'static str = "0.1.0";
const DEFAULT_INPUT_CHANNELS: u32 = 2;
const DEFAULT_OUTPUT_CHANNELS: u32 = 2;
fn params(&self) -> Arc<dyn Params> {
self.params.clone()
}
fn accepts_bus_config(&self, config: &BusConfig) -> bool {
config.num_input_channels == config.num_output_channels
}
fn initialize(
&mut self,
_bus_config: &BusConfig,
buffer_config: &BufferConfig,
_context: &mut impl InitContext,
) -> bool {
self.buffer_config = *buffer_config;
self.morse_fadeout_samples_start =
(MORSE_FADEOUT_START_MS / 1000.0 * buffer_config.sample_rate).round() as u32;
self.morse_fadeout_samples_end =
(MORSE_FADEOUT_END_MS / 1000.0 * buffer_config.sample_rate).round() as u32;
self.osc_phase_tau_dt = MORSE_FREQUENCY / buffer_config.sample_rate * std::f32::consts::TAU;
self.morse_seq_edges_samples = MORSE_SEQ_EDGES_MS.map(|(time_ms, gate)| {
(
(time_ms as f32 / 1000.0 * buffer_config.sample_rate).round() as u32,
gate,
)
});
true
}
fn reset(&mut self) {
self.morse_fadeout_samples_current = self.morse_fadeout_samples_end;
self.reset_morse_signal();
}
fn process(
&mut self,
buffer: &mut Buffer,
_aux: &mut AuxiliaryBuffers,
_context: &mut impl ProcessContext,
) -> ProcessStatus {
// Don't do anything when bouncing
if self.buffer_config.process_mode == ProcessMode::Offline {
return ProcessStatus::Normal;
}
let &(morse_seq_len, _) = self.morse_seq_edges_samples.last().unwrap();
for mut channel_samples in buffer.iter_samples() {
let mut is_peaking = false;
for sample in channel_samples.iter_mut() {
if sample.is_finite() {
is_peaking |= sample.abs() > self.params.threshold_gain.value();
} else {
// Infinity or NaN values need to be completely filtered out, because otherwise
// we'll try to mix them back into the signal later
*sample = 0.0;
is_peaking = true;
}
}
if is_peaking {
// We'll continue playback where it was left off when this gets triggered before the
// fadeout has finished, but otherwise the sequence should be restarted.
if self.morse_fadeout_samples_current >= self.morse_fadeout_samples_end {
self.reset_morse_signal();
}
// This is the number of samples into the fadeout
self.morse_fadeout_samples_current = 0;
}
// Depending on the current gate status in the morse code sequence we'll either play a
// sine wave oscillator or silence, and the original audio will be faded back in when it
// stays under the threshold for long enough.
if self.morse_fadeout_samples_current < self.morse_fadeout_samples_end {
// Move to the next step when it is reached
// NOTE: This assumes there are no two edges at the same time, becuase that would be
// weird
// NOTE: Also assumes the sequence starts at 0
let morse_seq_next_step_idx =
(self.morse_seq_current_step_idx + 1) % self.morse_seq_edges_samples.len();
if self.morse_seq_current_sample_idx
>= self.morse_seq_edges_samples[morse_seq_next_step_idx].0
{
self.morse_seq_current_step_idx = morse_seq_next_step_idx;
}
// And either play or don't play the sine wave depending on the current step's gate
// values. We'll wait for the phase wraparound when deactivating the sine wave to
// avoid clicks.
let (_, gate) = self.morse_seq_edges_samples[self.morse_seq_current_step_idx];
let morse_sample = if gate || self.osc_phase_tau > self.osc_phase_tau_dt {
// This phase runs from 0 to `2 * pi` as an optimization, so we can use it
// directly. And the sine wave is scaled down to the threshold minus 24 dB
let sine_sample =
self.osc_phase_tau.sin() * (self.params.threshold_gain.value() * 0.125);
self.osc_phase_tau += self.osc_phase_tau_dt;
if self.osc_phase_tau >= std::f32::consts::TAU {
self.osc_phase_tau -= std::f32::consts::TAU;
}
sine_sample
} else {
0.0
};
// We'll do an equal power fade
let original_t_squared = if self.morse_fadeout_samples_current
< self.morse_fadeout_samples_start
{
0.0
} else {
(self.morse_fadeout_samples_current - self.morse_fadeout_samples_start) as f32
/ (self.morse_fadeout_samples_end - self.morse_fadeout_samples_start) as f32
};
let original_t = original_t_squared.sqrt();
let morse_t = (1.0 - original_t_squared).sqrt();
for sample in channel_samples {
*sample = (morse_sample * morse_t) + (*sample * original_t);
}
self.morse_fadeout_samples_current += 1;
self.morse_seq_current_sample_idx += 1;
if self.morse_seq_current_sample_idx >= morse_seq_len {
self.morse_seq_current_sample_idx -= morse_seq_len;
self.morse_seq_current_step_idx = 0;
}
}
}
ProcessStatus::Normal
}
}
impl SafetyLimiter {
/// Reset the SOS signal to the start.
fn reset_morse_signal(&mut self) {
self.osc_phase_tau = 0.0;
self.morse_seq_current_step_idx = 0;
self.morse_seq_current_sample_idx = 0;
}
}
impl ClapPlugin for SafetyLimiter {
const CLAP_ID: &'static str = "nl.robbertvanderhelm.safety-limiter";
const CLAP_DESCRIPTION: Option<&'static str> = Some("Plays SOS in Morse code when redlining");
const CLAP_MANUAL_URL: Option<&'static str> = Some(Self::URL);
const CLAP_SUPPORT_URL: Option<&'static str> = None;
const CLAP_FEATURES: &'static [ClapFeature] = &[
ClapFeature::AudioEffect,
ClapFeature::Stereo,
ClapFeature::Mono,
ClapFeature::Utility,
];
}
impl Vst3Plugin for SafetyLimiter {
const VST3_CLASS_ID: [u8; 16] = *b"SafetyLimtrRvdH.";
const VST3_CATEGORIES: &'static str = "Fx|Tools";
}
nih_export_clap!(SafetyLimiter);
nih_export_vst3!(SafetyLimiter);