1
0
Fork 0
nih-plug/plugins/examples/stft/src/lib.rs
Robbert van der Helm be39e19365 Allow FFTW to destroy input arrays
Since they're scratch buffers anyways.
2022-03-08 13:50:45 +01:00

198 lines
6.4 KiB
Rust

use fftw::array::AlignedVec;
use fftw::plan::{C2RPlan, C2RPlan32, R2CPlan, R2CPlan32};
use fftw::types::{c32, Flag};
use nih_plug::prelude::*;
use std::f32;
use std::pin::Pin;
const WINDOW_SIZE: usize = 2048;
const OVERLAP_TIMES: usize = 4;
struct Stft {
params: Pin<Box<StftParams>>,
/// An adapter that performs most of the overlap-add algorithm for us.
stft: util::StftHelper,
/// A Hann window function, passed to the overlap-add helper.
window_function: Vec<f32>,
/// The FFT of a simple low pass FIR filter.
lp_filter_kernel: Vec<c32>,
/// The algorithms for the FFT and IFFT operations.
plan: Plan,
/// Scratch buffers for computing our FFT. The [`StftHelper`] already contains a buffer for the
/// real values.
complex_fft_scratch_buffer: AlignedVec<c32>,
}
/// FFTW uses raw pointers which aren't Send+Sync, so we'll wrap this in a separate struct.
struct Plan {
r2c_plan: R2CPlan32,
c2r_plan: C2RPlan32,
}
unsafe impl Send for Plan {}
unsafe impl Sync for Plan {}
#[derive(Params)]
struct StftParams {}
impl Default for Stft {
fn default() -> Self {
let mut r2c_plan: R2CPlan32 =
R2CPlan32::aligned(&[WINDOW_SIZE], Flag::MEASURE | Flag::DESTROYINPUT).unwrap();
let c2r_plan: C2RPlan32 =
C2RPlan32::aligned(&[WINDOW_SIZE], Flag::MEASURE | Flag::DESTROYINPUT).unwrap();
let mut real_fft_scratch_buffer: AlignedVec<f32> = AlignedVec::new(WINDOW_SIZE);
let mut complex_fft_scratch_buffer: AlignedVec<c32> = AlignedVec::new(WINDOW_SIZE / 2 + 1);
// Build a super simple low pass filter from one of the built in window function
const FILTER_WINDOW_SIZE: usize = 33;
let filter_window = util::window::hann(FILTER_WINDOW_SIZE);
real_fft_scratch_buffer[0..FILTER_WINDOW_SIZE].copy_from_slice(&filter_window);
// And make sure to normalize this so convolution sums to 1
let filter_normalization_factor = real_fft_scratch_buffer.iter().sum::<f32>().recip();
for sample in real_fft_scratch_buffer.as_slice_mut() {
*sample *= filter_normalization_factor;
}
r2c_plan
.r2c(
&mut real_fft_scratch_buffer,
&mut complex_fft_scratch_buffer,
)
.unwrap();
Self {
params: Box::pin(StftParams::default()),
stft: util::StftHelper::new(2, WINDOW_SIZE),
window_function: util::window::hann(WINDOW_SIZE),
lp_filter_kernel: complex_fft_scratch_buffer
.iter()
.take(WINDOW_SIZE)
.copied()
.collect(),
plan: Plan { r2c_plan, c2r_plan },
complex_fft_scratch_buffer,
}
}
}
#[allow(clippy::derivable_impls)]
impl Default for StftParams {
fn default() -> Self {
Self {}
}
}
impl Plugin for Stft {
const NAME: &'static str = "STFT Example";
const VENDOR: &'static str = "Moist Plugins GmbH";
const URL: &'static str = "https://youtu.be/dQw4w9WgXcQ";
const EMAIL: &'static str = "info@example.com";
const VERSION: &'static str = "0.0.1";
const DEFAULT_NUM_INPUTS: u32 = 2;
const DEFAULT_NUM_OUTPUTS: u32 = 2;
const ACCEPTS_MIDI: bool = false;
fn params(&self) -> Pin<&dyn Params> {
self.params.as_ref()
}
fn accepts_bus_config(&self, config: &BusConfig) -> bool {
// We'll only do stereo for simplicity's sake
config.num_input_channels == config.num_output_channels && config.num_input_channels == 2
}
fn initialize(
&mut self,
_bus_config: &BusConfig,
_buffer_config: &BufferConfig,
context: &mut impl ProcessContext,
) -> bool {
context.set_latency_samples(self.stft.latency_samples());
true
}
fn reset(&mut self) {
// Normally we'd also initialize the STFT helper for the correct channel count here, but we
// only do stereo so that's not necessary. Setting the block size also zeroes out the
// buffers.
self.stft.set_block_size(WINDOW_SIZE);
}
fn process(
&mut self,
buffer: &mut Buffer,
_context: &mut impl ProcessContext,
) -> ProcessStatus {
// Compensate for the window function, the overlap, and the extra gain introduced by the
// IDFT operation
const GAIN_COMPENSATION: f32 = f32::consts::E / OVERLAP_TIMES as f32 / WINDOW_SIZE as f32;
self.stft.process_overlap_add(
buffer,
&self.window_function,
OVERLAP_TIMES,
|_channel_idx, real_fft_scratch_buffer| {
// Forward FFT, the helper has already applied window function
self.plan
.r2c_plan
.r2c(
real_fft_scratch_buffer,
&mut self.complex_fft_scratch_buffer,
)
.unwrap();
// As per the convolution theorem we can simply multiply these two buffers. We'll
// also apply the gain compensation at this point.
for (fft_bin, kernel_bin) in self
.complex_fft_scratch_buffer
.as_slice_mut()
.iter_mut()
.zip(&self.lp_filter_kernel)
{
*fft_bin *= *kernel_bin * GAIN_COMPENSATION;
}
// Inverse FFT back into the scratch buffer. This will be added to a ring buffer
// which gets written back to the host at a one block delay.
self.plan
.c2r_plan
.c2r(
&mut self.complex_fft_scratch_buffer,
real_fft_scratch_buffer,
)
.unwrap();
},
);
ProcessStatus::Normal
}
}
impl ClapPlugin for Stft {
const CLAP_ID: &'static str = "com.moist-plugins-gmbh.stft";
const CLAP_DESCRIPTION: &'static str = "An example plugin using the STFT helper";
const CLAP_FEATURES: &'static [&'static str] = &["audio_effect", "stereo", "tool"];
const CLAP_MANUAL_URL: &'static str = Self::URL;
const CLAP_SUPPORT_URL: &'static str = Self::URL;
}
impl Vst3Plugin for Stft {
const VST3_CLASS_ID: [u8; 16] = *b"StftMoistestPlug";
const VST3_CATEGORIES: &'static str = "Fx|Tools";
}
nih_export_clap!(Stft);
nih_export_vst3!(Stft);