1
0
Fork 0
nih-plug/plugins/crisp/src/lib.rs
Robbert van der Helm 98876670f8 Re-export debug macros from the debug module
This makes it easy to import just the macros without having to use the
oldschool `#[macro_use] extern crate ...;` syntax.
2022-04-30 02:10:54 +02:00

493 lines
19 KiB
Rust

// Crisp: a distortion plugin but not quite
// Copyright (C) 2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use nih_plug::prelude::*;
use nih_plug_vizia::ViziaState;
use pcg::Pcg32iState;
use std::sync::Arc;
mod editor;
mod filter;
mod pcg;
/// The number of channels we support. Hardcoded to allow for easier SIMD-ifying in the future.
const NUM_CHANNELS: u32 = 2;
/// The number of channels to iterate over at a time.
const BLOCK_SIZE: usize = 64;
/// These seeds being fixed makes bouncing deterministic.
const INITIAL_PRNG_SEED: Pcg32iState = Pcg32iState::new(69, 420);
/// Allow 100% amount to scale the gain to a bit above 100%, to make the effect even less subtle.
const AMOUNT_GAIN_MULTIPLIER: f32 = 2.0;
const MIN_FILTER_FREQUENCY: f32 = 5.0;
const MAX_FILTER_FREQUENCY: f32 = 22_000.0;
/// This plugin essentially layers the sound with another copy of the signal ring modulated with
/// white (or filtered) noise. That other copy of the sound may have a low-pass filter applied to it
/// since this effect just turns into literal noise at high frequencies.
struct Crisp {
params: Arc<CrispParams>,
editor_state: Arc<ViziaState>,
/// Needed for computing the filter coefficients.
sample_rate: f32,
/// A PRNG for generating noise, after that we'll implement PCG ourselves so we can easily
/// SIMD-ify this in the future.
prng: Pcg32iState,
/// Resonant filters for low passing the input signal before RM'ing, to allow this to work with
/// inputs that already contain a lot of high freuqency content.
rm_input_lpf: [filter::Biquad<f32>; NUM_CHANNELS as usize],
/// Resonant filters for high- and then low- passing the noise signal, to make it even brighter.
noise_hpf: [filter::Biquad<f32>; NUM_CHANNELS as usize],
noise_lpf: [filter::Biquad<f32>; NUM_CHANNELS as usize],
}
#[derive(Params)]
struct CrispParams {
/// On a range of `[0, 1]`, how much of the modulated sound to mix in.
#[id = "amount"]
amount: FloatParam,
/// What kind of RM to apply. The preset this was modelled after whether intentional or not only
/// RMs the positive part of the waveform.
#[id = "mode"]
mode: EnumParam<Mode>,
/// How to handle stereo signals. See [`StereoMode`].
#[id = "stereo"]
stereo_mode: EnumParam<StereoMode>,
/// The cutoff frequency for the low-pass filter applied to the input before RM'ing.
#[id = "rmlpff"]
rm_input_lpf_freq: FloatParam,
/// The Q frequency for the low-pass filter applied to the input before RM'ing.
#[id = "rmlpfq"]
rm_input_lpf_q: FloatParam,
/// The cutoff frequency for the high-pass filter applied to the noise.
#[id = "nzhpff"]
noise_hpf_freq: FloatParam,
/// The Q parameter for the high pass-filter applied to the noise.
#[id = "nzhpfq"]
noise_hpf_q: FloatParam,
/// The cutoff frequency for the low-pass filter applied to the noise.
#[id = "nzlpff"]
noise_lpf_freq: FloatParam,
/// The Q parameter for the low pass-filter applied to the noise.
#[id = "nzlpfq"]
noise_lpf_q: FloatParam,
/// Output gain, as voltage gain. Displayed in decibels.
#[id = "output"]
output_gain: FloatParam,
/// If set, only output the RM'ed signal. Can be useful for further processing.
#[id = "wtonly"]
wet_only: BoolParam,
}
/// Controls the type of modulation to apply.
#[derive(Enum, Debug, PartialEq)]
enum Mode {
/// RM the entire waveform.
Soggy,
/// RM only the positive part of the waveform.
Crispy,
/// RM only the negative part of the waveform.
#[name = "Crispy (alt)"]
CrispyNegated,
}
/// Controls how to handle stereo input.
#[derive(Enum, Debug, PartialEq)]
enum StereoMode {
/// Use the same noise for both channels.
Mono,
/// Use a different noise source per channel.
Stereo,
}
impl Default for Crisp {
fn default() -> Self {
Self {
params: Arc::new(CrispParams::default()),
editor_state: editor::default_state(),
sample_rate: 1.0,
prng: INITIAL_PRNG_SEED,
rm_input_lpf: [filter::Biquad::default(); NUM_CHANNELS as usize],
noise_hpf: [filter::Biquad::default(); NUM_CHANNELS as usize],
noise_lpf: [filter::Biquad::default(); NUM_CHANNELS as usize],
}
}
}
impl Default for CrispParams {
#[allow(clippy::derivable_impls)]
fn default() -> Self {
let f32_hz_then_khz = formatters::v2s_f32_hz_then_khz(0);
let from_f32_hz_then_khz = formatters::s2v_f32_hz_then_khz();
Self {
amount: FloatParam::new("Amount", 0.35, FloatRange::Linear { min: 0.0, max: 1.0 })
.with_smoother(SmoothingStyle::Linear(10.0))
.with_unit("%")
.with_value_to_string(formatters::v2s_f32_percentage(0))
.with_string_to_value(formatters::s2v_f32_percentage()),
mode: EnumParam::new("Mode", Mode::Crispy),
stereo_mode: EnumParam::new("Stereo Mode", StereoMode::Stereo),
rm_input_lpf_freq: FloatParam::new(
"RM LP Frequency",
MAX_FILTER_FREQUENCY,
FloatRange::Skewed {
min: MIN_FILTER_FREQUENCY,
max: MAX_FILTER_FREQUENCY,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_smoother(SmoothingStyle::Logarithmic(100.0))
// The unit is baked into the value so we can show the disabled string
.with_value_to_string(Arc::new(|value| {
if value >= MAX_FILTER_FREQUENCY {
String::from("Disabled")
} else {
format!("{:.0} Hz", value)
}
}))
.with_string_to_value(Arc::new(|string| {
if string == "Disabled" {
Some(MAX_FILTER_FREQUENCY)
} else {
string.trim().trim_end_matches(" Hz").parse().ok()
}
})),
rm_input_lpf_q: FloatParam::new(
"RM LP Resonance",
2.0f32.sqrt() / 2.0,
FloatRange::Skewed {
min: 2.0f32.sqrt() / 2.0,
max: 10.0,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_smoother(SmoothingStyle::Logarithmic(100.0))
.with_value_to_string(formatters::v2s_f32_rounded(2)),
noise_hpf_freq: FloatParam::new(
"Noise HP Frequency",
MIN_FILTER_FREQUENCY,
FloatRange::Skewed {
min: MIN_FILTER_FREQUENCY,
max: MAX_FILTER_FREQUENCY,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_smoother(SmoothingStyle::Logarithmic(100.0))
// The unit is baked into the value so we can show the disabled string
.with_value_to_string({
let f32_hz_then_khz = f32_hz_then_khz.clone();
Arc::new(move |value| {
if value <= MIN_FILTER_FREQUENCY {
String::from("Disabled")
} else {
f32_hz_then_khz(value)
}
})
})
.with_string_to_value({
let from_f32_hz_then_khz = from_f32_hz_then_khz.clone();
Arc::new(move |string| {
if string == "Disabled" {
Some(MIN_FILTER_FREQUENCY)
} else {
from_f32_hz_then_khz(string)
}
})
}),
noise_hpf_q: FloatParam::new(
"Noise HP Resonance",
2.0f32.sqrt() / 2.0,
FloatRange::Skewed {
min: 2.0f32.sqrt() / 2.0,
max: 10.0,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_smoother(SmoothingStyle::Logarithmic(100.0))
.with_value_to_string(formatters::v2s_f32_rounded(2)),
noise_lpf_freq: FloatParam::new(
"Noise LP Frequency",
MAX_FILTER_FREQUENCY,
FloatRange::Skewed {
min: MIN_FILTER_FREQUENCY,
max: MAX_FILTER_FREQUENCY,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_smoother(SmoothingStyle::Logarithmic(100.0))
// The unit is baked into the value so we can show the disabled string
.with_value_to_string(Arc::new(move |value| {
if value >= MAX_FILTER_FREQUENCY {
String::from("Disabled")
} else {
f32_hz_then_khz(value)
}
}))
.with_string_to_value(Arc::new(move |string| {
if string == "Disabled" {
Some(MAX_FILTER_FREQUENCY)
} else {
from_f32_hz_then_khz(string)
}
})),
noise_lpf_q: FloatParam::new(
"Noise LP Resonance",
2.0f32.sqrt() / 2.0,
FloatRange::Skewed {
min: 2.0f32.sqrt() / 2.0,
max: 10.0,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_smoother(SmoothingStyle::Logarithmic(100.0))
.with_value_to_string(formatters::v2s_f32_rounded(2)),
output_gain: FloatParam::new(
"Output",
1.0,
// Because we're representing gain as decibels the range is already logarithmic
FloatRange::Linear {
min: util::db_to_gain(-24.0),
max: util::db_to_gain(0.0),
},
)
.with_smoother(SmoothingStyle::Logarithmic(10.0))
.with_unit(" dB")
.with_value_to_string(formatters::v2s_f32_gain_to_db(2))
.with_string_to_value(formatters::s2v_f32_gain_to_db()),
wet_only: BoolParam::new("Wet Only", false),
}
}
}
impl Plugin for Crisp {
const NAME: &'static str = "Crisp";
const VENDOR: &'static str = "Robbert van der Helm";
const URL: &'static str = "https://github.com/robbert-vdh/nih-plug";
const EMAIL: &'static str = "mail@robbertvanderhelm.nl";
const VERSION: &'static str = "0.1.0";
const DEFAULT_NUM_INPUTS: u32 = NUM_CHANNELS;
const DEFAULT_NUM_OUTPUTS: u32 = NUM_CHANNELS;
const SAMPLE_ACCURATE_AUTOMATION: bool = true;
fn params(&self) -> Arc<dyn Params> {
// The explicit cast is not needed, but Rust Analyzer gets very upset when you don't do it
self.params.clone() as Arc<dyn Params>
}
fn editor(&self) -> Option<Box<dyn Editor>> {
editor::create(self.params.clone(), self.editor_state.clone())
}
fn accepts_bus_config(&self, config: &BusConfig) -> bool {
// We'll add a SIMD version in a bit which only supports stereo
config.num_input_channels == config.num_output_channels
&& config.num_input_channels == NUM_CHANNELS
}
fn initialize(
&mut self,
bus_config: &BusConfig,
buffer_config: &BufferConfig,
_context: &mut impl ProcessContext,
) -> bool {
nih_debug_assert_eq!(bus_config.num_input_channels, NUM_CHANNELS);
nih_debug_assert_eq!(bus_config.num_output_channels, NUM_CHANNELS);
self.sample_rate = buffer_config.sample_rate;
true
}
fn reset(&mut self) {
// By using the same seeds each time bouncing can be made deterministic
self.prng = INITIAL_PRNG_SEED;
for filter in &mut self.rm_input_lpf {
filter.reset();
}
for filter in &mut self.noise_hpf {
filter.reset();
}
for filter in &mut self.noise_lpf {
filter.reset();
}
}
fn process(
&mut self,
buffer: &mut Buffer,
_context: &mut impl ProcessContext,
) -> ProcessStatus {
for (_, mut block) in buffer.iter_blocks(BLOCK_SIZE) {
let mut rm_outputs = [[0.0; NUM_CHANNELS as usize]; BLOCK_SIZE];
// Reduce per-sample branching a bit by iterating over smaller blocks and only then
// deciding what to do with the output. This version branches only once per sample (in
// `do_ring_mod()`) which can be trivially optimized to a masked min/max later.
// TODO: SIMD-ize this to process both channels at once
match self.params.stereo_mode.value() {
StereoMode::Mono => {
for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) {
let amount = self.params.amount.smoothed.next() * AMOUNT_GAIN_MULTIPLIER;
// Controls the pre-RM LPF and the HPF applied to the noise signal
self.maybe_update_filters();
let noise = self.gen_noise(0);
for (channel_idx, (sample, rm_output)) in
channel_samples.into_iter().zip(rm_outputs).enumerate()
{
*rm_output = self.do_ring_mod(*sample, channel_idx, noise) * amount;
}
}
}
StereoMode::Stereo => {
for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) {
let amount = self.params.amount.smoothed.next() * AMOUNT_GAIN_MULTIPLIER;
self.maybe_update_filters();
for (channel_idx, (sample, rm_output)) in
channel_samples.into_iter().zip(rm_outputs).enumerate()
{
let noise = self.gen_noise(channel_idx);
*rm_output = self.do_ring_mod(*sample, channel_idx, noise) * amount;
}
}
}
}
if self.params.wet_only.value {
for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) {
let output_gain = self.params.output_gain.smoothed.next();
for (sample, rm_output) in channel_samples.into_iter().zip(rm_outputs) {
*sample = *rm_output * output_gain;
}
}
} else {
for (channel_samples, rm_outputs) in block.iter_samples().zip(&mut rm_outputs) {
let output_gain = self.params.output_gain.smoothed.next();
for (sample, rm_output) in channel_samples.into_iter().zip(rm_outputs) {
*sample = (*sample + *rm_output) * output_gain;
}
}
}
}
ProcessStatus::Normal
}
}
impl Crisp {
/// Generate a new noise sample with the high pass filter applied.
fn gen_noise(&mut self, channel: usize) -> f32 {
let noise = self.prng.next_f32() * 2.0 - 1.0;
let high_passed = self.noise_hpf[channel].process(noise);
self.noise_lpf[channel].process(high_passed)
}
/// Perform the RM step depending on the mode. This applies a low pass filter to the input
/// before RM'ing.
fn do_ring_mod(&mut self, sample: f32, channel_idx: usize, noise: f32) -> f32 {
let sample = self.rm_input_lpf[channel_idx].process(sample);
// TODO: Avoid branching in the main loop, this just makes it a bit easier to prototype
match self.params.mode.value() {
Mode::Soggy => sample * noise,
Mode::Crispy => sample.max(0.0) * noise,
Mode::CrispyNegated => sample.max(0.0) * noise,
}
}
/// Update the filter coefficients if needed. Should be called once per sample.
fn maybe_update_filters(&mut self) {
if self.params.rm_input_lpf_freq.smoothed.is_smoothing()
|| self.params.rm_input_lpf_q.smoothed.is_smoothing()
{
self.update_rm_input_lpf();
}
if self.params.noise_hpf_freq.smoothed.is_smoothing()
|| self.params.noise_hpf_q.smoothed.is_smoothing()
{
self.update_noise_hpf();
}
if self.params.noise_lpf_freq.smoothed.is_smoothing()
|| self.params.noise_lpf_q.smoothed.is_smoothing()
{
self.update_noise_lpf();
}
}
/// Update the filter coefficients if needed. Should be called explicitly from `initialize()`.
fn update_rm_input_lpf(&mut self) {
let frequency = self.params.rm_input_lpf_freq.smoothed.next();
let q = self.params.rm_input_lpf_q.smoothed.next();
let coefficients = filter::BiquadCoefficients::lowpass(self.sample_rate, frequency, q);
for filter in &mut self.rm_input_lpf {
filter.coefficients = coefficients;
}
}
/// Update the filter coefficients if needed. Should be called explicitly from `initialize()`.
fn update_noise_hpf(&mut self) {
let frequency = self.params.noise_hpf_freq.smoothed.next();
let q = self.params.noise_hpf_q.smoothed.next();
let coefficients = filter::BiquadCoefficients::highpass(self.sample_rate, frequency, q);
for filter in &mut self.noise_hpf {
filter.coefficients = coefficients;
}
}
/// Update the filter coefficients if needed. Should be called explicitly from `initialize()`.
fn update_noise_lpf(&mut self) {
let frequency = self.params.noise_lpf_freq.smoothed.next();
let q = self.params.noise_lpf_q.smoothed.next();
let coefficients = filter::BiquadCoefficients::lowpass(self.sample_rate, frequency, q);
for filter in &mut self.noise_lpf {
filter.coefficients = coefficients;
}
}
}
impl ClapPlugin for Crisp {
const CLAP_ID: &'static str = "nl.robbertvanderhelm.crisp";
const CLAP_DESCRIPTION: &'static str = "Adds a bright crispy top end to low bass sounds";
const CLAP_FEATURES: &'static [&'static str] =
&["audio_effect", "stereo", "distortion", "filter"];
const CLAP_MANUAL_URL: &'static str = Self::URL;
const CLAP_SUPPORT_URL: &'static str = Self::URL;
}
impl Vst3Plugin for Crisp {
const VST3_CLASS_ID: [u8; 16] = *b"CrispPluginRvdH.";
const VST3_CATEGORIES: &'static str = "Fx|Filter|Distortion";
}
nih_export_clap!(Crisp);
nih_export_vst3!(Crisp);