1
0
Fork 0
nih-plug/src/wrapper/vst3/inner.rs
2022-04-24 15:48:05 +02:00

494 lines
24 KiB
Rust

use atomic_refcell::AtomicRefCell;
use crossbeam::atomic::AtomicCell;
use crossbeam::channel::{self, SendTimeoutError};
use parking_lot::RwLock;
use std::collections::{HashMap, HashSet, VecDeque};
use std::mem::MaybeUninit;
use std::sync::atomic::{AtomicBool, AtomicU32, Ordering};
use std::sync::Arc;
use std::time::Duration;
use vst3_sys::base::{kInvalidArgument, kResultOk, tresult};
use vst3_sys::vst::{IComponentHandler, RestartFlags};
use super::context::{WrapperGuiContext, WrapperProcessContext};
use super::note_expressions::NoteExpressionController;
use super::param_units::ParamUnits;
use super::util::{ObjectPtr, VstPtr, VST3_MIDI_PARAMS_END, VST3_MIDI_PARAMS_START};
use super::view::WrapperView;
use crate::buffer::Buffer;
use crate::context::Transport;
use crate::event_loop::{EventLoop, MainThreadExecutor, OsEventLoop};
use crate::midi::{MidiConfig, NoteEvent};
use crate::param::internals::{ParamPtr, Params};
use crate::param::ParamFlags;
use crate::plugin::{BufferConfig, BusConfig, Editor, ProcessStatus, Vst3Plugin};
use crate::wrapper::state::{self, PluginState};
use crate::wrapper::util::{hash_param_id, process_wrapper};
/// The actual wrapper bits. We need this as an `Arc<T>` so we can safely use our event loop API.
/// Since we can't combine that with VST3's interior reference counting this just has to be moved to
/// its own struct.
pub(crate) struct WrapperInner<P: Vst3Plugin> {
/// The wrapped plugin instance.
pub plugin: RwLock<P>,
/// The plugin's parameters. These are fetched once during initialization. That way the
/// `ParamPtr`s are guaranteed to live at least as long as this object and we can interact with
/// the `Params` object without having to acquire a lock on `plugin`.
pub params: Arc<dyn Params>,
/// The plugin's editor, if it has one. This object does not do anything on its own, but we need
/// to instantiate this in advance so we don't need to lock the entire [`Plugin`] object when
/// creating an editor.
pub editor: Option<Arc<dyn Editor>>,
/// The host's [`IComponentHandler`] instance, if passed through
/// [`IEditController::set_component_handler`].
pub component_handler: AtomicRefCell<Option<VstPtr<dyn IComponentHandler>>>,
/// Our own [`IPlugView`] instance. This is set while the editor is actually visible (which is
/// different form the lifetime of [`WrapperView`][super::WrapperView] itself).
pub plug_view: RwLock<Option<ObjectPtr<WrapperView<P>>>>,
/// A realtime-safe task queue so the plugin can schedule tasks that need to be run later on the
/// GUI thread. This field should not be used directly for posting tasks. This should be done
/// through [`Self::do_maybe_async()`] instead. That method posts the task to the host's
/// `IRunLoop` instead of it's available.
///
/// This RwLock is only needed because it has to be initialized late. There is no reason to
/// mutably borrow the event loop, so reads will never be contested.
///
/// TODO: Is there a better type for Send+Sync late initializaiton?
pub event_loop: AtomicRefCell<MaybeUninit<OsEventLoop<Task, Self>>>,
/// Whether the plugin is currently processing audio. In other words, the last state
/// `IAudioProcessor::setActive()` has been called with.
pub is_processing: AtomicBool,
/// The current bus configuration, modified through `IAudioProcessor::setBusArrangements()`.
pub current_bus_config: AtomicCell<BusConfig>,
/// The current buffer configuration, containing the sample rate and the maximum block size.
/// Will be set in `IAudioProcessor::setupProcessing()`.
pub current_buffer_config: AtomicCell<Option<BufferConfig>>,
/// The last process status returned by the plugin. This is used for tail handling.
pub last_process_status: AtomicCell<ProcessStatus>,
/// The current latency in samples, as set by the plugin through the [`ProcessContext`].
pub current_latency: AtomicU32,
/// Contains slices for the plugin's outputs. You can't directly create a nested slice form
/// apointer to pointers, so this needs to be preallocated in the setup call and kept around
/// between process calls. This buffer owns the vector, because otherwise it would need to store
/// a mutable reference to the data contained in this mutex.
pub output_buffer: AtomicRefCell<Buffer<'static>>,
/// The incoming events for the plugin, if `P::ACCEPTS_MIDI` is set. If
/// `P::SAMPLE_ACCURATE_AUTOMATION`, this is also read in lockstep with the parameter change
/// block splitting.
///
/// NOTE: Because with VST3 MIDI CC messages are sent as parameter changes and VST3 does not
/// interleave parameter changes and note events, this queue has to be sorted when
/// creating the process context
pub input_events: AtomicRefCell<VecDeque<NoteEvent>>,
/// Stores any events the plugin has output during the current processing cycle, analogous to
/// `input_events`.
pub output_events: AtomicRefCell<VecDeque<NoteEvent>>,
/// VST3 has several useful predefined note expressions, but for some reason they are the only
/// note event type that don't have MIDI note ID and channel fields. So we need to keep track of
/// the msot recent VST3 note IDs we've seen, and then map those back to MIDI note IDs and
/// channels as needed.
pub note_expression_controller: AtomicRefCell<NoteExpressionController>,
/// Unprocessed parameter changes and note events sent by the host during a process call.
/// Parameter changes are sent as separate queues for each parameter, and note events are in
/// another queue on top of that. And if `P::MIDI_INPUT >= MidiConfig::MidiCCs`, then we can
/// also receive MIDI CC messages through special parameter changes. On top of that, we also
/// support sample accurate automation through block splitting if
/// `P::SAMPLE_ACCURATE_AUTOMATION` is set. To account for all of this, we'll read all of the
/// parameter changes and events into a vector at the start of the process call, sort it, and
/// then do the block splitting based on that. Note events need to have their timing adjusted to
/// match the block start, since they're all read upfront.
pub process_events: AtomicRefCell<Vec<ProcessEvent>>,
/// The plugin is able to restore state through a method on the `GuiContext`. To avoid changing
/// parameters mid-processing and running into garbled data if the host also tries to load state
/// at the same time the restoring happens at the end of each processing call. If this zero
/// capacity channel contains state data at that point, then the audio thread will take the
/// state out of the channel, restore the state, and then send it back through the same channel.
/// In other words, the GUI thread acts as a sender and then as a receiver, while the audio
/// thread acts as a receiver and then as a sender. That way deallocation can happen on the GUI
/// thread. All of this happens without any blocking on the audio thread.
pub updated_state_sender: channel::Sender<PluginState>,
/// The receiver belonging to [`new_state_sender`][Self::new_state_sender].
pub updated_state_receiver: channel::Receiver<PluginState>,
/// The keys from `param_map` in a stable order.
pub param_hashes: Vec<u32>,
/// A mapping from parameter ID hashes (obtained from the string parameter IDs) to pointers to
/// parameters belonging to the plugin. These addresses will remain stable as long as the
/// `params` object does not get deallocated.
pub param_by_hash: HashMap<u32, ParamPtr>,
pub param_units: ParamUnits,
/// Mappings from string parameter indentifiers to parameter hashes. Useful for debug logging
/// and when storing and restorign plugin state.
pub param_id_to_hash: HashMap<String, u32>,
/// The inverse mapping from [`param_by_hash`][Self::param_by_hash]. This is needed to be able
/// to have an ergonomic parameter setting API that uses references to the parameters instead of
/// having to add a setter function to the parameter (or even worse, have it be completely
/// untyped).
pub param_ptr_to_hash: HashMap<ParamPtr, u32>,
}
/// Tasks that can be sent from the plugin to be executed on the main thread in a non-blocking
/// realtime safe way (either a random thread or `IRunLoop` on Linux, the OS' message loop on
/// Windows and macOS).
#[derive(Debug, Clone)]
pub enum Task {
/// Trigger a restart with the given restart flags. This is a bit set of the flags from
/// [`vst3_sys::vst::RestartFlags`].
TriggerRestart(i32),
/// Request the editor to be resized according to its current size. Right now there is no way to
/// handle denied resize requestsyet.
RequestResize,
}
/// VST3 makes audio processing pretty complicated. In order to support both block splitting for
/// sample accurate automation and MIDI CC handling through parameters we need to put all parameter
/// changes and (translated) note events into a sorted array first.
#[derive(Debug, PartialEq)]
pub enum ProcessEvent {
/// An incoming parameter change sent by the host. This will only be used when sample accurate
/// automation has been enabled, and the parameters are only updated when we process this
/// spooled event at the start of a block.
ParameterChange {
/// The event's sample offset within the buffer. Used for sorting.
timing: u32,
/// The parameter's hash, as used everywhere else.
hash: u32,
/// The normalized values, as provided by the host.
normalized_value: f32,
},
/// An incoming parameter change sent by the host. This will only be used when sample accurate
/// automation has been enabled, and the parameters are only updated when we process this
/// spooled event at the start of a block.
NoteEvent {
/// The event's sample offset within the buffer. Used for sorting. The timing stored within
/// the note event needs to have the block start index subtraced from it.
timing: u32,
/// The actual note event, make sure to subtract the block start index with
/// [`NoteEvent::subtract_timing()`] before putting this into the input event queue.
event: NoteEvent,
},
}
impl<P: Vst3Plugin> WrapperInner<P> {
#[allow(unused_unsafe)]
pub fn new() -> Arc<Self> {
let plugin = P::default();
let editor = plugin.editor().map(Arc::from);
// This is used to allow the plugin to restore preset data from its editor, see the comment
// on `Self::updated_state_sender`
let (updated_state_sender, updated_state_receiver) = channel::bounded(0);
// This is a mapping from the parameter IDs specified by the plugin to pointers to thsoe
// parameters. These pointers are assumed to be safe to dereference as long as
// `wrapper.plugin` is alive. The plugin API identifiers these parameters by hashes, which
// we'll calculate from the string ID specified by the plugin. These parameters should also
// remain in the same order as the one returned by the plugin.
let params = plugin.params();
let param_id_hashes_ptrs_groups: Vec<_> = params
.param_map()
.into_iter()
.map(|(id, ptr, group)| {
let hash = hash_param_id(&id);
(id, hash, ptr, group)
})
.collect();
if cfg!(debug_assertions) {
let param_map = params.param_map();
let param_ids: HashSet<_> = param_id_hashes_ptrs_groups
.iter()
.map(|(id, _, _, _)| id.clone())
.collect();
nih_debug_assert_eq!(
param_map.len(),
param_ids.len(),
"The plugin has duplicate parameter IDs, weird things may happen. \
Consider using 6 character parameter IDs to avoid collissions.."
);
let mut bypass_param_exists = false;
for (id, hash, ptr, _) in &param_id_hashes_ptrs_groups {
let flags = unsafe { ptr.flags() };
let is_bypass = flags.contains(ParamFlags::BYPASS);
if is_bypass && bypass_param_exists {
nih_debug_assert_failure!(
"Duplicate bypass parameters found, the host will only use the first one"
);
}
bypass_param_exists |= is_bypass;
if P::MIDI_INPUT >= MidiConfig::MidiCCs
&& (VST3_MIDI_PARAMS_START..VST3_MIDI_PARAMS_END).contains(hash)
{
nih_debug_assert_failure!(
"Parameter '{}' collides with an automatically generated MIDI CC parameter, consider giving it a different ID", id
);
}
}
}
let param_hashes = param_id_hashes_ptrs_groups
.iter()
.map(|(_, hash, _, _)| *hash)
.collect();
let param_by_hash = param_id_hashes_ptrs_groups
.iter()
.map(|(_, hash, ptr, _)| (*hash, *ptr))
.collect();
let param_units = ParamUnits::from_param_groups(
param_id_hashes_ptrs_groups
.iter()
.map(|(_, hash, _, group_name)| (*hash, group_name.as_str())),
)
.expect("Inconsistent parameter groups");
let param_id_to_hash = param_id_hashes_ptrs_groups
.iter()
.map(|(id, hash, _, _)| (id.clone(), *hash))
.collect();
let param_ptr_to_hash = param_id_hashes_ptrs_groups
.into_iter()
.map(|(_, hash, ptr, _)| (ptr, hash))
.collect();
let wrapper = Self {
plugin: RwLock::new(plugin),
params,
editor,
component_handler: AtomicRefCell::new(None),
plug_view: RwLock::new(None),
event_loop: AtomicRefCell::new(MaybeUninit::uninit()),
is_processing: AtomicBool::new(false),
// Some hosts, like the current version of Bitwig and Ardour at the time of writing,
// will try using the plugin's default not yet initialized bus arrangement. Because of
// that, we'll always initialize this configuration even before the host requests a
// channel layout.
current_bus_config: AtomicCell::new(BusConfig {
num_input_channels: P::DEFAULT_NUM_INPUTS,
num_output_channels: P::DEFAULT_NUM_OUTPUTS,
}),
current_buffer_config: AtomicCell::new(None),
last_process_status: AtomicCell::new(ProcessStatus::Normal),
current_latency: AtomicU32::new(0),
output_buffer: AtomicRefCell::new(Buffer::default()),
input_events: AtomicRefCell::new(VecDeque::with_capacity(1024)),
output_events: AtomicRefCell::new(VecDeque::with_capacity(1024)),
note_expression_controller: AtomicRefCell::new(NoteExpressionController::default()),
process_events: AtomicRefCell::new(Vec::with_capacity(4096)),
updated_state_sender,
updated_state_receiver,
param_hashes,
param_by_hash,
param_units,
param_id_to_hash,
param_ptr_to_hash,
};
// FIXME: Right now this is safe, but if we are going to have a singleton main thread queue
// serving multiple plugin instances, Arc can't be used because its reference count
// is separate from the internal COM-style reference count.
let wrapper: Arc<WrapperInner<P>> = wrapper.into();
*wrapper.event_loop.borrow_mut() =
MaybeUninit::new(OsEventLoop::new_and_spawn(Arc::downgrade(&wrapper)));
wrapper
}
pub fn make_gui_context(self: Arc<Self>) -> Arc<WrapperGuiContext<P>> {
Arc::new(WrapperGuiContext { inner: self })
}
pub fn make_process_context(&self, transport: Transport) -> WrapperProcessContext<'_, P> {
WrapperProcessContext {
inner: self,
input_events_guard: self.input_events.borrow_mut(),
output_events_guard: self.output_events.borrow_mut(),
transport,
}
}
/// Either posts the function to the task queue using [`EventLoop::do_maybe_async()`] so it can
/// be delegated to the main thread, executes the task directly if this is the main thread, or
/// runs the task on the host's `IRunLoop` if the GUI is open and it exposes one. This function
///
/// If the task queue is full, then this will return false.
#[must_use]
pub fn do_maybe_async(&self, task: Task) -> bool {
let event_loop = self.event_loop.borrow();
let event_loop = unsafe { event_loop.assume_init_ref() };
if event_loop.is_main_thread() {
unsafe { self.execute(task) };
true
} else {
// If the editor is open, and the host exposes the `IRunLoop` interface, then we'll run
// the task on the host's GUI thread using that interface. Otherwise we'll use the
// regular eent loop. If the editor gets dropped while there's still outstanding work
// left in the run loop task queue, then those tasks will be posted to the regular event
// loop so no work is lost.
match &*self.plug_view.read() {
Some(plug_view) => match plug_view.do_maybe_in_run_loop(task) {
Ok(()) => true,
Err(task) => event_loop.do_maybe_async(task),
},
None => event_loop.do_maybe_async(task),
}
}
}
/// If there's an editor open, let it know that parameter values have changed. This should be
/// called whenever there's been a call or multiple calls to
/// [`set_normalized_value_by_hash()[Self::set_normalized_value_by_hash()`].
pub fn notify_param_values_changed(&self) {
if let Some(editor) = &self.editor {
editor.param_values_changed();
}
}
/// Convenience function for setting a value for a parameter as triggered by a VST3 parameter
/// update. The same rate is for updating parameter smoothing.
///
/// After calling this function, you should call
/// [`notify_param_values_changed()`][Self::notify_param_values_changed()] to allow the editor
/// to update itself. This needs to be done seperately so you can process parameter changes in
/// batches.
pub fn set_normalized_value_by_hash(
&self,
hash: u32,
normalized_value: f32,
sample_rate: Option<f32>,
) -> tresult {
match self.param_by_hash.get(&hash) {
Some(param_ptr) => {
// Also update the parameter's smoothing if applicable
match (param_ptr, sample_rate) {
(_, Some(sample_rate)) => unsafe {
param_ptr.set_normalized_value(normalized_value);
param_ptr.update_smoother(sample_rate, false);
},
_ => unsafe { param_ptr.set_normalized_value(normalized_value) },
}
kResultOk
}
_ => kInvalidArgument,
}
}
/// Get the plugin's state object, may be called by the plugin's GUI as part of its own preset
/// management. The wrapper doesn't use these functions and serializes and deserializes directly
/// the JSON in the relevant plugin API methods instead.
pub fn get_state_object(&self) -> PluginState {
unsafe {
state::serialize_object(
self.params.clone(),
&self.param_by_hash,
&self.param_id_to_hash,
)
}
}
/// Update the plugin's internal state, called by the plugin itself from the GUI thread. To
/// prevent corrupting data and changing parameters during processing the actual state is only
/// updated at the end of the audio processing cycle.
pub fn set_state_object(&self, mut state: PluginState) {
// Use a loop and timeouts to handle the super rare edge case when this function gets called
// between a process call and the host disabling the plugin
loop {
if self.is_processing.load(Ordering::SeqCst) {
// If the plugin is currently processing audio, then we'll perform the restore
// operation at the end of the audio call. This involves sending the state to the
// audio thread, having the audio thread handle the state restore at the very end of
// the process function, and then sending the state back to this thread so it can be
// deallocated without blocking the audio thread.
match self
.updated_state_sender
.send_timeout(state, Duration::from_secs(1))
{
Ok(_) => {
// As mentioned above, the state object will be passed back to this thread
// so we can deallocate it without blocking.
let state = self.updated_state_receiver.recv();
drop(state);
break;
}
Err(SendTimeoutError::Timeout(value)) => {
state = value;
continue;
}
Err(SendTimeoutError::Disconnected(_)) => {
nih_debug_assert_failure!("State update channel got disconnected");
return;
}
}
} else {
// Otherwise we'll set the state right here and now, since this function should be
// called from a GUI thread
unsafe {
state::deserialize_object(
&state,
self.params.clone(),
&self.param_by_hash,
&self.param_id_to_hash,
self.current_buffer_config.load().as_ref(),
);
}
self.notify_param_values_changed();
let bus_config = self.current_bus_config.load();
if let Some(buffer_config) = self.current_buffer_config.load() {
let mut plugin = self.plugin.write();
plugin.initialize(
&bus_config,
&buffer_config,
&mut self.make_process_context(Transport::new(buffer_config.sample_rate)),
);
process_wrapper(|| plugin.reset());
}
break;
}
}
// After the state has been updated, notify the host about the new parameter values
let task_posted = unsafe { self.event_loop.borrow().assume_init_ref() }.do_maybe_async(
Task::TriggerRestart(RestartFlags::kParamValuesChanged as i32),
);
nih_debug_assert!(task_posted, "The task queue is full, dropping task...");
}
}
impl<P: Vst3Plugin> MainThreadExecutor<Task> for WrapperInner<P> {
unsafe fn execute(&self, task: Task) {
// This function is always called from the main thread
// TODO: When we add GUI resizing and context menus, this should propagate those events to
// `IRunLoop` on Linux to keep REAPER happy. That does mean a double spool, but we can
// come up with a nicer solution to handle that later (can always add a separate
// function for checking if a to be scheduled task can be handled right ther and
// then).
match task {
Task::TriggerRestart(flags) => match &*self.component_handler.borrow() {
Some(handler) => {
handler.restart_component(flags);
}
None => nih_debug_assert_failure!("Component handler not yet set"),
},
Task::RequestResize => match &*self.plug_view.read() {
Some(plug_view) => {
plug_view.request_resize();
}
None => nih_debug_assert_failure!("Can't resize a closed editor"),
},
}
}
}