1
0
Fork 0
nih-plug/plugins/spectral_compressor/src/compressor_bank.rs
2022-08-20 19:54:15 +02:00

1095 lines
49 KiB
Rust

// Spectral Compressor: an FFT based compressor
// Copyright (C) 2021-2022 Robbert van der Helm
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use nih_plug::prelude::*;
use realfft::num_complex::Complex32;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use crate::SpectralCompressorParams;
// These are the parameter ID prefixes used for the downwards and upwards cmpression parameters.
const DOWNWARDS_NAME_PREFIX: &str = "downwards_";
const UPWARDS_NAME_PREFIX: &str = "upwards_";
/// The envelopes are initialized to the RMS value of a -24 dB sine wave to make sure extreme upwards
/// compression doesn't cause pops when switching between window sizes and when deactivating and
/// reactivating the plugin.
const ENVELOPE_INIT_VALUE: f32 = std::f32::consts::FRAC_1_SQRT_2 / 8.0;
/// A bank of compressors so each FFT bin can be compressed individually. The vectors in this struct
/// will have a capacity of `MAX_WINDOW_SIZE / 2 + 1` and a size that matches the current complex
/// FFT buffer size. This is stored as a struct of arrays to make SIMD-ing easier in the future.
pub struct CompressorBank {
/// If set, then the downwards thresholds should be updated on the next processing cycle. Can be
/// set from a parameter value change listener, and is also set when calling `.reset_for_size`.
pub should_update_downwards_thresholds: Arc<AtomicBool>,
/// The same as `should_update_downwards_thresholds`, but for upwards thresholds.
pub should_update_upwards_thresholds: Arc<AtomicBool>,
/// If set, then the downwards ratios should be updated on the next processing cycle. Can be set
/// from a parameter value change listener, and is also set when calling `.reset_for_size`.
pub should_update_downwards_ratios: Arc<AtomicBool>,
/// The same as `should_update_downwards_ratios`, but for upwards ratios.
pub should_update_upwards_ratios: Arc<AtomicBool>,
/// For each compressor bin, `log2(freq)` where `freq` is the frequency associated with that
/// compressor. This is precomputed since all update functions need it.
log2_freqs: Vec<f32>,
/// Downwards compressor thresholds, in linear space.
downwards_thresholds: Vec<f32>,
/// The start (lower end) of the downwards's knee range, in linear space. This is calculated in
/// decibel/log space and then converted to gain to keep everything in linear space.
downwards_knee_starts: Vec<f32>,
/// The end (upper end) of the downwards's knee range, in linear space.
downwards_knee_ends: Vec<f32>,
/// The reciprocals of the downwards compressor ratios. At 1.0 the cmopressor won't do anything.
/// If [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the
/// same for each compressor. We're doing the compression in linear space to avoid a logarithm,
/// so the division by the ratio becomes an nth-root, or exponentation by the reciprocal of the
/// ratio.
downwards_ratio_recips: Vec<f32>,
/// Upwards compressor thresholds, in linear space.
upwards_thresholds: Vec<f32>,
/// The start (lower end) of the upwards's knee range, in linear space.
upwards_knee_starts: Vec<f32>,
/// The end (upper end) of the upwards's knee range, in linear space.
upwards_knee_ends: Vec<f32>,
/// The same as `downwards_ratio_recipss`, but for the upwards compression.
upwards_ratio_recips: Vec<f32>,
/// The current envelope value for this bin, in linear space. Indexed by
/// `[channel_idx][compressor_idx]`.
envelopes: Vec<Vec<f32>>,
/// When sidechaining is enabled, this contains the per-channel frqeuency spectrum magnitudes
/// for the current block. The compressor thresholds and knee values are multiplied by these
/// values to get the effective thresholds.
sidechain_spectrum_magnitudes: Vec<Vec<f32>>,
/// The window size this compressor bank was configured for. This is used to compute the
/// coefficients for the envelope followers in the process function.
window_size: usize,
/// The sample rate this compressor bank was configured for. This is used to compute the
/// coefficients for the envelope followers in the process function.
sample_rate: f32,
}
#[derive(Params)]
pub struct ThresholdParams {
/// The compressor threshold at the center frequency. When sidechaining is enabled, the input
/// signal is gained by the inverse of this value. This replaces the input gain in the original
/// Spectral Compressor. In the polynomial below, this is the intercept.
#[id = "tresh_global"]
pub threshold_db: FloatParam,
/// The center frqeuency for the target curve when sidechaining is not enabled. The curve is a
/// polynomial `threshold_db + curve_slope*x + curve_curve*(x^2)` that evaluates to a decibel
/// value, where `x = log2(center_frequency) - log2(bin_frequency)`. In other words, this is
/// evaluated in the log/log domain for decibels and octaves.
#[id = "thresh_center_freq"]
pub center_frequency: FloatParam,
/// The slope for the curve, in the log/log domain. See the polynomial above.
#[id = "thresh_curve_slope"]
pub curve_slope: FloatParam,
/// The, uh, 'curve' for the curve, in the logarithmic domain. This is the third coefficient in
/// the quadratic polynomial and controls the parabolic behavior. Positive values turn the curve
/// into a v-shaped curve, while negative values attenuate everything outside of the center
/// frequency. See the polynomial above.
#[id = "thresh_curve_curve"]
pub curve_curve: FloatParam,
/// Controls the type of threshold that should be used. Check [`ThresholdMode`] for more
/// information.
#[id = "thresh_mode"]
pub mode: EnumParam<ThresholdMode>,
/// A `[0, 1]` parameter that controls how much of the other channels should be mixed in when
/// computing the channel gain value that is then multiplied with he thresholds and knee values
/// to the the compression parameters when using the sidechain modes.
#[id = "thresh_sc_link"]
pub sc_channel_link: FloatParam,
}
/// The type of threshold to use.
#[derive(Enum, Debug, PartialEq, Eq)]
pub enum ThresholdMode {
/// Configure the thresholds to offset pink noise. This means that the slope will receive an
/// additional -3 dB/octave slope.
#[id = "internal"]
#[name = "Pink Noise"]
Internal,
/// Dynamically reconfigure the thresholds based on a sidechain input. The -3 dB/octave slope
/// offset is not applied here so the curve stays true to the sidechain input at the default
/// settings. This works by simply multiplying the sidechain gain levels with the precomputed
/// threshold, knee start, and knee end values. The sidechain channel linking option determines
/// how how much of the other channel values to mix in before multiplying the sidechain gain
/// values with the thresholds.
#[id = "sidechain"]
#[name = "Sidechain Matching"]
SidechainMatch,
/// Compress the input signal based on the sidechain signal's activity. Can be used to
/// spectrally duck the input, or to amplify parts of the input based on holes in the sidechain
/// signal.
#[id = "sidechain_compress"]
#[name = "Sidechain Compression"]
SidechainCompress,
}
/// Contains the compressor parameters for both the upwards and downwards compressor banks.
#[derive(Params)]
pub struct CompressorBankParams {
#[nested = "upwards"]
pub upwards: Arc<CompressorParams>,
#[nested = "downwards"]
pub downwards: Arc<CompressorParams>,
}
/// This struct contains the parameters for either the upward or downward compressors. The `Params`
/// trait is implemented manually to avoid copy-pasting parameters for both types of compressor.
/// Both versions will have a parameter ID and a parameter name prefix to distinguish them.
pub struct CompressorParams {
/// The prefix to use in the `.param_map()` function so the upwards and downwards compressors
/// get unique parameter IDs.
param_id_prefix: &'static str,
/// The compression threshold relative to the target curve.
pub threshold_offset_db: FloatParam,
/// The compression ratio. At 1.0 the compressor is disengaged.
pub ratio: FloatParam,
/// A `[0, 1]` scaling factor that causes the compressors for the higher registers to have lower
/// ratios than the compressors for the lower registers. The scaling is applied logarithmically
/// rather than linearly over the compressors. If this is set to 1.0, then the ratios will be
/// the same for every compressor.
pub high_freq_ratio_rolloff: FloatParam,
/// The compression knee width, in decibels.
pub knee_width_db: FloatParam,
}
unsafe impl Params for CompressorParams {
fn param_map(&self) -> Vec<(String, ParamPtr, String)> {
let prefix = self.param_id_prefix;
vec![
(
format!("{prefix}threshold_offset"),
self.threshold_offset_db.as_ptr(),
// The parent `CompressorBankParams` struct will add the group here
String::new(),
),
(format!("{prefix}ratio"), self.ratio.as_ptr(), String::new()),
(
format!("{prefix}high_freq_rolloff"),
self.high_freq_ratio_rolloff.as_ptr(),
String::new(),
),
(
format!("{prefix}knee"),
self.knee_width_db.as_ptr(),
String::new(),
),
]
}
}
impl ThresholdParams {
/// Create a new [`ThresholdParams`] object. Changing any of the threshold parameters causes the
/// passed compressor bank's thresholds to be updated.
pub fn new(compressor_bank: &CompressorBank) -> Self {
let should_update_downwards_thresholds =
compressor_bank.should_update_downwards_thresholds.clone();
let should_update_upwards_thresholds =
compressor_bank.should_update_upwards_thresholds.clone();
let set_update_both_thresholds = Arc::new(move |_| {
should_update_downwards_thresholds.store(true, Ordering::SeqCst);
should_update_upwards_thresholds.store(true, Ordering::SeqCst);
});
ThresholdParams {
threshold_db: FloatParam::new(
"Global Threshold",
0.0,
FloatRange::Linear {
min: -100.0,
max: 20.0,
},
)
.with_callback(set_update_both_thresholds.clone())
.with_unit(" dB")
.with_step_size(0.1),
center_frequency: FloatParam::new(
"Threshold Center",
420.0,
FloatRange::Skewed {
min: 20.0,
max: 20_000.0,
factor: FloatRange::skew_factor(-2.0),
},
)
.with_callback(set_update_both_thresholds.clone())
// This includes the unit
.with_value_to_string(formatters::v2s_f32_hz_then_khz(0))
.with_string_to_value(formatters::s2v_f32_hz_then_khz()),
// These are polynomial coefficients that are evaluated in the log/log domain
// (octaves/decibels). The global threshold is the intercept.
curve_slope: FloatParam::new(
"Threshold Slope",
0.0,
FloatRange::SymmetricalSkewed {
min: -36.0,
max: 36.0,
factor: FloatRange::skew_factor(-2.0),
center: 0.0,
},
)
.with_callback(set_update_both_thresholds.clone())
.with_unit(" dB/oct")
.with_step_size(0.01),
curve_curve: FloatParam::new(
"Threshold Curve",
0.0,
FloatRange::SymmetricalSkewed {
min: -24.0,
max: 24.0,
factor: FloatRange::skew_factor(-2.0),
center: 0.0,
},
)
.with_callback(set_update_both_thresholds.clone())
.with_unit(" dB/oct²")
.with_step_size(0.01),
mode: EnumParam::new("Mode", ThresholdMode::Internal)
// Not the most efficient way to do this, but it's a bit cleaner than the
// alternative
.with_callback(Arc::new(move |_| set_update_both_thresholds(0.0))),
sc_channel_link: FloatParam::new(
"SC Channel Link",
0.0,
FloatRange::Linear { min: 0.0, max: 1.0 },
)
.with_unit("%")
.with_value_to_string(formatters::v2s_f32_percentage(0))
.with_string_to_value(formatters::s2v_f32_percentage()),
}
}
}
impl CompressorBankParams {
/// Create compressor bank parameter objects for both the downwards and upwards compressors of
/// `compressor`. Changing the ratio and threshold parameters will cause the compressor to
/// recompute its values on the next processing cycle.
pub fn new(compressor: &CompressorBank) -> Self {
CompressorBankParams {
downwards: Arc::new(CompressorParams::new(
DOWNWARDS_NAME_PREFIX,
"Downwards",
compressor.should_update_downwards_thresholds.clone(),
compressor.should_update_downwards_ratios.clone(),
)),
upwards: Arc::new(CompressorParams::new(
UPWARDS_NAME_PREFIX,
"Upwards",
compressor.should_update_upwards_thresholds.clone(),
compressor.should_update_upwards_ratios.clone(),
)),
}
}
}
impl CompressorParams {
/// Create a new [`CompressorBankParams`] object with a prefix for all parameter names. Changing
/// any of the threshold or ratio parameters causes the passed atomics to be updated. These
/// should be taken from a [`CompressorBank`] so the parameters are linked to it.
pub fn new(
param_id_prefix: &'static str,
name_prefix: &str,
should_update_thresholds: Arc<AtomicBool>,
should_update_ratios: Arc<AtomicBool>,
) -> Self {
let set_update_thresholds =
Arc::new(move |_| should_update_thresholds.store(true, Ordering::SeqCst));
let set_update_ratios =
Arc::new(move |_| should_update_ratios.store(true, Ordering::SeqCst));
CompressorParams {
param_id_prefix,
// TODO: Set nicer default values for these things
// As explained above, these offsets are relative to the target curve
threshold_offset_db: FloatParam::new(
format!("{name_prefix} Offset"),
0.0,
FloatRange::Linear {
min: -50.0,
max: 50.0,
},
)
.with_callback(set_update_thresholds)
.with_unit(" dB")
.with_step_size(0.1),
ratio: FloatParam::new(
format!("{name_prefix} Ratio"),
1.0,
FloatRange::Skewed {
min: 1.0,
max: 500.0,
factor: FloatRange::skew_factor(-2.0),
},
)
.with_callback(set_update_ratios.clone())
.with_step_size(0.01)
.with_value_to_string(formatters::v2s_compression_ratio(2))
.with_string_to_value(formatters::s2v_compression_ratio()),
high_freq_ratio_rolloff: FloatParam::new(
format!("{name_prefix} Hi-Freq Rolloff"),
// TODO: Bit of a hacky way to set the default values differently for upwards and
// downwards compressors
if param_id_prefix == UPWARDS_NAME_PREFIX {
0.75
} else {
// These basically work in the opposite way
0.25
},
FloatRange::Linear { min: 0.0, max: 1.0 },
)
.with_callback(set_update_ratios)
.with_unit("%")
.with_value_to_string(formatters::v2s_f32_percentage(0))
.with_string_to_value(formatters::s2v_f32_percentage()),
knee_width_db: FloatParam::new(
format!("{name_prefix} Knee"),
6.0,
FloatRange::Skewed {
min: 0.0,
max: 36.0,
factor: FloatRange::skew_factor(-1.0),
},
)
.with_unit(" dB")
.with_step_size(0.1),
}
}
}
impl CompressorBank {
/// Set up the compressor for the given channel count and maximum FFT window size. The
/// compressors won't be initialized yet.
pub fn new(num_channels: usize, max_window_size: usize) -> Self {
let complex_buffer_len = max_window_size / 2 + 1;
CompressorBank {
should_update_downwards_thresholds: Arc::new(AtomicBool::new(true)),
should_update_upwards_thresholds: Arc::new(AtomicBool::new(true)),
should_update_downwards_ratios: Arc::new(AtomicBool::new(true)),
should_update_upwards_ratios: Arc::new(AtomicBool::new(true)),
log2_freqs: Vec::with_capacity(complex_buffer_len),
downwards_thresholds: Vec::with_capacity(complex_buffer_len),
downwards_knee_starts: Vec::with_capacity(complex_buffer_len),
downwards_knee_ends: Vec::with_capacity(complex_buffer_len),
downwards_ratio_recips: Vec::with_capacity(complex_buffer_len),
upwards_thresholds: Vec::with_capacity(complex_buffer_len),
upwards_knee_starts: Vec::with_capacity(complex_buffer_len),
upwards_knee_ends: Vec::with_capacity(complex_buffer_len),
upwards_ratio_recips: Vec::with_capacity(complex_buffer_len),
envelopes: vec![Vec::with_capacity(complex_buffer_len); num_channels],
sidechain_spectrum_magnitudes: vec![
Vec::with_capacity(complex_buffer_len);
num_channels
],
window_size: 0,
sample_rate: 1.0,
}
}
/// Change the capacities of the internal buffers to fit new parameters. Use the
/// `.reset_for_size()` method to clear the buffers and set the current window size.
pub fn update_capacity(&mut self, num_channels: usize, max_window_size: usize) {
let complex_buffer_len = max_window_size / 2 + 1;
self.log2_freqs
.reserve_exact(complex_buffer_len.saturating_sub(self.log2_freqs.len()));
self.downwards_thresholds
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_thresholds.len()));
self.downwards_ratio_recips
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_ratio_recips.len()));
self.downwards_knee_starts
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_knee_starts.len()));
self.downwards_knee_ends
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_knee_ends.len()));
self.upwards_thresholds
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_thresholds.len()));
self.upwards_ratio_recips
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_ratio_recips.len()));
self.upwards_knee_starts
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_knee_starts.len()));
self.upwards_knee_ends
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_knee_ends.len()));
self.envelopes.resize_with(num_channels, Vec::new);
for envelopes in self.envelopes.iter_mut() {
envelopes.reserve_exact(complex_buffer_len.saturating_sub(envelopes.len()));
}
self.sidechain_spectrum_magnitudes
.resize_with(num_channels, Vec::new);
for magnitudes in self.sidechain_spectrum_magnitudes.iter_mut() {
magnitudes.reserve_exact(complex_buffer_len.saturating_sub(magnitudes.len()));
}
}
/// Resize the number of compressors to match the current window size. Also precomputes the
/// 2-log frequencies for each bin.
///
/// If the window size is larger than the maximum window size, then this will allocate.
pub fn resize(&mut self, buffer_config: &BufferConfig, window_size: usize) {
let complex_buffer_len = window_size / 2 + 1;
// These 2-log frequencies are needed when updating the compressor parameters, so we'll just
// precompute them to avoid having to repeat the same expensive computations all the time
self.log2_freqs.resize(complex_buffer_len, 0.0);
// The first one should always stay at zero, `0.0f32.log2() == NaN`.
for (i, log2_freq) in self.log2_freqs.iter_mut().enumerate().skip(1) {
let freq = (i as f32 / window_size as f32) * buffer_config.sample_rate;
*log2_freq = freq.log2();
}
self.downwards_thresholds.resize(complex_buffer_len, 1.0);
self.downwards_ratio_recips.resize(complex_buffer_len, 1.0);
self.downwards_knee_starts.resize(complex_buffer_len, 1.0);
self.downwards_knee_ends.resize(complex_buffer_len, 1.0);
self.upwards_thresholds.resize(complex_buffer_len, 1.0);
self.upwards_ratio_recips.resize(complex_buffer_len, 1.0);
self.upwards_knee_starts.resize(complex_buffer_len, 1.0);
self.upwards_knee_ends.resize(complex_buffer_len, 1.0);
for envelopes in self.envelopes.iter_mut() {
envelopes.resize(complex_buffer_len, ENVELOPE_INIT_VALUE);
}
for magnitudes in self.sidechain_spectrum_magnitudes.iter_mut() {
magnitudes.resize(complex_buffer_len, 0.0);
}
self.window_size = window_size;
self.sample_rate = buffer_config.sample_rate;
// The compressors need to be updated on the next processing cycle
self.should_update_downwards_thresholds
.store(true, Ordering::SeqCst);
self.should_update_upwards_thresholds
.store(true, Ordering::SeqCst);
self.should_update_downwards_ratios
.store(true, Ordering::SeqCst);
self.should_update_upwards_ratios
.store(true, Ordering::SeqCst);
}
/// Clear out the envelope followers.
pub fn reset(&mut self) {
for envelopes in self.envelopes.iter_mut() {
envelopes.fill(ENVELOPE_INIT_VALUE);
}
// Sidechain data doesn't need to be reset as it will be overwritten immediately before use
}
/// Apply the magnitude compression to a buffer of FFT bins. The compressors are first updated
/// if needed. The overlap amount is needed to compute the effective sample rate. The
/// `skip_bins_below` argument is used to avoid compressing DC bins, or the neighbouring bins
/// the DC signal may have been convolved into because of the Hann window function.
pub fn process(
&mut self,
buffer: &mut [Complex32],
channel_idx: usize,
params: &SpectralCompressorParams,
overlap_times: usize,
skip_bins_below: usize,
) {
nih_debug_assert_eq!(buffer.len(), self.log2_freqs.len());
self.update_if_needed(params);
match params.threshold.mode.value() {
ThresholdMode::Internal => {
self.update_envelopes(buffer, channel_idx, params, overlap_times, skip_bins_below);
self.compress(buffer, channel_idx, params, skip_bins_below)
}
ThresholdMode::SidechainMatch => {
self.update_envelopes(buffer, channel_idx, params, overlap_times, skip_bins_below);
self.compress_sidechain_match(buffer, channel_idx, params, skip_bins_below)
}
ThresholdMode::SidechainCompress => {
// This mode uses regular compression, but the envelopes are computed from the
// sidechain input magnitudes. These are already set in `process_sidechain`. This
// separate envelope updating function is needed for the channel linking.
self.update_envelopes_sidechain(
channel_idx,
params,
overlap_times,
skip_bins_below,
);
self.compress(buffer, channel_idx, params, skip_bins_below)
}
};
}
/// Set the sidechain frequency spectrum magnitudes just before a [`process()`][Self::process()]
/// call. These will be multiplied with the existing compressor thresholds and knee values to
/// get the effective values for use with sidechaining.
pub fn process_sidechain(&mut self, sc_buffer: &mut [Complex32], channel_idx: usize) {
nih_debug_assert_eq!(sc_buffer.len(), self.log2_freqs.len());
self.update_sidechain_spectra(sc_buffer, channel_idx);
}
/// Update the envelope followers based on the bin magnetudes.
fn update_envelopes(
&mut self,
buffer: &mut [Complex32],
channel_idx: usize,
params: &SpectralCompressorParams,
overlap_times: usize,
skip_bins_below: usize,
) {
// The coefficient the old envelope value is multiplied by when the current rectified sample
// value is above the envelope's value. The 0 to 1 step response retains 36.8% of the old
// value after the attack time has elapsed, and current value is 63.2% of the way towards 1.
// The effective sample rate needs to compensate for the periodic nature of the STFT
// operation. Since with a 2048 sample window and 4x overlap, you'd run this function once
// for every 512 samples.
let effective_sample_rate =
self.sample_rate / (self.window_size as f32 / overlap_times as f32);
let attack_old_t = if params.global.compressor_attack_ms.value == 0.0 {
0.0
} else {
(-1.0 / (params.global.compressor_attack_ms.value / 1000.0 * effective_sample_rate))
.exp()
};
let attack_new_t = 1.0 - attack_old_t;
// The same as `attack_old_t`, but for the release phase of the envelope follower
let release_old_t = if params.global.compressor_release_ms.value == 0.0 {
0.0
} else {
(-1.0 / (params.global.compressor_release_ms.value / 1000.0 * effective_sample_rate))
.exp()
};
let release_new_t = 1.0 - release_old_t;
for (bin, envelope) in buffer
.iter()
.zip(self.envelopes[channel_idx].iter_mut())
.skip(skip_bins_below)
{
let magnitude = bin.norm();
if *envelope > magnitude {
// Release stage
*envelope = (release_old_t * *envelope) + (release_new_t * magnitude);
} else {
// Attack stage
*envelope = (attack_old_t * *envelope) + (attack_new_t * magnitude);
}
}
}
/// The same as [`update_envelopes()`][Self::update_envelopes()], but based on the previously
/// set sidechain bin magnitudes. This allows for channel linking.
/// [`process_sidechain()`][Self::process_sidechain()] needs to be called for all channels
/// before this function can be used to set the magnitude spectra.
fn update_envelopes_sidechain(
&mut self,
channel_idx: usize,
params: &SpectralCompressorParams,
overlap_times: usize,
skip_bins_below: usize,
) {
// See `update_envelopes()`
let effective_sample_rate =
self.sample_rate / (self.window_size as f32 / overlap_times as f32);
let attack_old_t = if params.global.compressor_attack_ms.value == 0.0 {
0.0
} else {
(-1.0 / (params.global.compressor_attack_ms.value / 1000.0 * effective_sample_rate))
.exp()
};
let attack_new_t = 1.0 - attack_old_t;
let release_old_t = if params.global.compressor_release_ms.value == 0.0 {
0.0
} else {
(-1.0 / (params.global.compressor_release_ms.value / 1000.0 * effective_sample_rate))
.exp()
};
let release_new_t = 1.0 - release_old_t;
// For the channel linking
let num_channels = self.sidechain_spectrum_magnitudes.len() as f32;
let other_channels_t = params.threshold.sc_channel_link.value / num_channels;
let this_channel_t = 1.0 - (other_channels_t * (num_channels - 1.0));
for (bin_idx, envelope) in self.envelopes[channel_idx]
.iter_mut()
.enumerate()
.skip(skip_bins_below)
{
// In this mode the envelopes are set based on the sidechain signal, taking channel
// linking into account
let sidechain_magnitude: f32 = self
.sidechain_spectrum_magnitudes
.iter()
.enumerate()
.map(|(sidechain_channel_idx, magnitudes)| {
let t = if sidechain_channel_idx == channel_idx {
this_channel_t
} else {
other_channels_t
};
unsafe { magnitudes.get_unchecked(bin_idx) * t }
})
.sum::<f32>();
if *envelope > sidechain_magnitude {
// Release stage
*envelope = (release_old_t * *envelope) + (release_new_t * sidechain_magnitude);
} else {
// Attack stage
*envelope = (attack_old_t * *envelope) + (attack_new_t * sidechain_magnitude);
}
}
}
/// Update the spectral data using the sidechain input
fn update_sidechain_spectra(&mut self, sc_buffer: &mut [Complex32], channel_idx: usize) {
nih_debug_assert!(channel_idx < self.sidechain_spectrum_magnitudes.len());
for (bin, magnitude) in sc_buffer
.iter()
.zip(self.sidechain_spectrum_magnitudes[channel_idx].iter_mut())
{
*magnitude = bin.norm();
}
}
/// Actually do the thing. [`Self::update_envelopes()`] or
/// [`Self::update_envelopes_sidechain()`] must have been called before calling this.
///
/// # Panics
///
/// Panics if the buffer does not have the same length as the one that was passed to the last
/// `resize()` call.
fn compress(
&self,
buffer: &mut [Complex32],
channel_idx: usize,
params: &SpectralCompressorParams,
skip_bins_below: usize,
) {
// Well I'm not sure at all why this scaling works, but it does. With higher knee
// bandwidths, the middle values needs to be pushed more towards the post-knee threshold
// than with lower knee values. These scaling factors are used as exponents.
let downwards_knee_scaling_factor =
compute_knee_scaling_factor(params.compressors.downwards.knee_width_db.value);
// Note the square root here, since the curve needs to go the other way for the upwards
// version
let upwards_knee_scaling_factor =
compute_knee_scaling_factor(params.compressors.upwards.knee_width_db.value).sqrt();
assert!(self.downwards_thresholds.len() == buffer.len());
assert!(self.downwards_ratio_recips.len() == buffer.len());
assert!(self.downwards_knee_starts.len() == buffer.len());
assert!(self.downwards_knee_ends.len() == buffer.len());
assert!(self.upwards_thresholds.len() == buffer.len());
assert!(self.upwards_ratio_recips.len() == buffer.len());
assert!(self.upwards_knee_starts.len() == buffer.len());
assert!(self.upwards_knee_ends.len() == buffer.len());
// NOTE: In the sidechain compression mode these envelopes are computed from the sidechain
// signal instead of the main input
for (bin_idx, (bin, envelope)) in buffer
.iter_mut()
.zip(self.envelopes[channel_idx].iter())
.enumerate()
.skip(skip_bins_below)
{
// This works by computing a scaling factor, and then scaling the bin magnitudes by that.
let mut scale = 1.0;
// All compression happens in the linear domain to save a logarithm
// SAFETY: These sizes were asserted above
let downwards_threshold = unsafe { self.downwards_thresholds.get_unchecked(bin_idx) };
let downwards_ratio_recip =
unsafe { self.downwards_ratio_recips.get_unchecked(bin_idx) };
let downwards_knee_start = unsafe { self.downwards_knee_starts.get_unchecked(bin_idx) };
let downwards_knee_end = unsafe { self.downwards_knee_ends.get_unchecked(bin_idx) };
if *downwards_ratio_recip != 1.0 {
scale *= compress_downwards(
*envelope,
*downwards_threshold,
*downwards_ratio_recip,
*downwards_knee_start,
*downwards_knee_end,
downwards_knee_scaling_factor,
);
}
// Upwards compression should not happen when the signal is _too_ quiet as we'd only be
// amplifying noise
let upwards_threshold = unsafe { self.upwards_thresholds.get_unchecked(bin_idx) };
let upwards_ratio_recip = unsafe { self.upwards_ratio_recips.get_unchecked(bin_idx) };
let upwards_knee_start = unsafe { self.upwards_knee_starts.get_unchecked(bin_idx) };
let upwards_knee_end = unsafe { self.upwards_knee_ends.get_unchecked(bin_idx) };
if *upwards_ratio_recip != 1.0 && *envelope > 1e-6 {
scale *= compress_upwards(
*envelope,
*upwards_threshold,
*upwards_ratio_recip,
*upwards_knee_start,
*upwards_knee_end,
upwards_knee_scaling_factor,
);
}
*bin *= scale;
}
}
/// The same as [`compress()`][Self::compress()], but multiplying the threshold and knee values
/// with the sidechain gains.
///
/// # Panics
///
/// Panics if the buffer does not have the same length as the one that was passed to the last
/// `resize()` call.
fn compress_sidechain_match(
&self,
buffer: &mut [Complex32],
channel_idx: usize,
params: &SpectralCompressorParams,
skip_bins_below: usize,
) {
// See `compress` for more details
let downwards_knee_scaling_factor =
compute_knee_scaling_factor(params.compressors.downwards.knee_width_db.value);
let upwards_knee_scaling_factor =
compute_knee_scaling_factor(params.compressors.upwards.knee_width_db.value).sqrt();
// For the channel linking
let num_channels = self.sidechain_spectrum_magnitudes.len() as f32;
let other_channels_t = params.threshold.sc_channel_link.value / num_channels;
let this_channel_t = 1.0 - (other_channels_t * (num_channels - 1.0));
assert!(self.sidechain_spectrum_magnitudes[channel_idx].len() == buffer.len());
assert!(self.downwards_thresholds.len() == buffer.len());
assert!(self.downwards_ratio_recips.len() == buffer.len());
assert!(self.downwards_knee_starts.len() == buffer.len());
assert!(self.downwards_knee_ends.len() == buffer.len());
assert!(self.upwards_thresholds.len() == buffer.len());
assert!(self.upwards_ratio_recips.len() == buffer.len());
assert!(self.upwards_knee_starts.len() == buffer.len());
assert!(self.upwards_knee_ends.len() == buffer.len());
for (bin_idx, (bin, envelope)) in buffer
.iter_mut()
.zip(self.envelopes[channel_idx].iter())
.enumerate()
.skip(skip_bins_below)
{
// The idea here is that we scale the compressor thresholds/knee values by the sidechain
// signal, thus sort of creating a dynamic multiband compressor
let sidechain_scale: f32 = self
.sidechain_spectrum_magnitudes
.iter()
.enumerate()
.map(|(sidechain_channel_idx, magnitudes)| {
let t = if sidechain_channel_idx == channel_idx {
this_channel_t
} else {
other_channels_t
};
unsafe { magnitudes.get_unchecked(bin_idx) * t }
})
.sum::<f32>()
// The thresholds may never reach zero as they are used in divisions
.max(f32::EPSILON);
let mut scale = 1.0;
// Notice how the threshold and knee values are scaled here
let downwards_threshold =
unsafe { self.downwards_thresholds.get_unchecked(bin_idx) * sidechain_scale };
let downwards_ratio_recip =
unsafe { self.downwards_ratio_recips.get_unchecked(bin_idx) };
let downwards_knee_start =
unsafe { self.downwards_knee_starts.get_unchecked(bin_idx) * sidechain_scale };
let downwards_knee_end =
unsafe { self.downwards_knee_ends.get_unchecked(bin_idx) * sidechain_scale };
if *downwards_ratio_recip != 1.0 {
scale *= compress_downwards(
*envelope,
downwards_threshold,
*downwards_ratio_recip,
downwards_knee_start,
downwards_knee_end,
downwards_knee_scaling_factor,
);
}
let upwards_threshold =
unsafe { self.upwards_thresholds.get_unchecked(bin_idx) * sidechain_scale };
let upwards_ratio_recip = unsafe { self.upwards_ratio_recips.get_unchecked(bin_idx) };
let upwards_knee_start =
unsafe { self.upwards_knee_starts.get_unchecked(bin_idx) * sidechain_scale };
let upwards_knee_end =
unsafe { self.upwards_knee_ends.get_unchecked(bin_idx) * sidechain_scale };
if *upwards_ratio_recip != 1.0 && *envelope > 1e-6 {
scale *= compress_upwards(
*envelope,
upwards_threshold,
*upwards_ratio_recip,
upwards_knee_start,
upwards_knee_end,
upwards_knee_scaling_factor,
);
}
*bin *= scale;
}
}
/// Update the compressors if needed. This is called just before processing, and the compressors
/// are updated in accordance to the atomic flags set on this struct.
fn update_if_needed(&mut self, params: &SpectralCompressorParams) {
// The threshold curve is a polynomial in log-log (decibels-octaves) space. The reuslt from
// evaluating this needs to be converted to linear gain for the compressors.
let intercept = params.threshold.threshold_db.value;
// The cheeky 3 additional dB/octave attenuation is to match pink noise with the default
// settings. When using sidechaining we explicitly don't want this because the curve should
// be a flat offset to the sidechain input at the default settings.
let slope = match params.threshold.mode.value() {
ThresholdMode::Internal => params.threshold.curve_slope.value - 3.0,
ThresholdMode::SidechainMatch | ThresholdMode::SidechainCompress => {
params.threshold.curve_slope.value
}
};
let curve = params.threshold.curve_curve.value;
let log2_center_freq = params.threshold.center_frequency.value.log2();
let downwards_high_freq_ratio_rolloff =
params.compressors.downwards.high_freq_ratio_rolloff.value;
let upwards_high_freq_ratio_rolloff =
params.compressors.upwards.high_freq_ratio_rolloff.value;
let log2_nyquist_freq = self
.log2_freqs
.last()
.expect("The CompressorBank has not yet been resized");
if self
.should_update_downwards_thresholds
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
let intercept = intercept + params.compressors.downwards.threshold_offset_db.value;
for ((log2_freq, threshold), (knee_start, knee_end)) in self
.log2_freqs
.iter()
.zip(self.downwards_thresholds.iter_mut())
.zip(
self.downwards_knee_starts
.iter_mut()
.zip(self.downwards_knee_ends.iter_mut()),
)
{
let offset = log2_freq - log2_center_freq;
let threshold_db = intercept + (slope * offset) + (curve * offset * offset);
let knee_start_db =
threshold_db - (params.compressors.downwards.knee_width_db.value / 2.0);
let knee_end_db =
threshold_db + (params.compressors.downwards.knee_width_db.value / 2.0);
// This threshold must never reach zero as it's used in divisions to get a gain ratio
// above the threshold
*threshold = util::db_to_gain(threshold_db).max(f32::EPSILON);
*knee_start = util::db_to_gain(knee_start_db).max(f32::EPSILON);
*knee_end = util::db_to_gain(knee_end_db).max(f32::EPSILON);
}
}
if self
.should_update_upwards_thresholds
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
let intercept = intercept + params.compressors.upwards.threshold_offset_db.value;
for ((log2_freq, threshold), (knee_start, knee_end)) in self
.log2_freqs
.iter()
.zip(self.upwards_thresholds.iter_mut())
.zip(
self.upwards_knee_starts
.iter_mut()
.zip(self.upwards_knee_ends.iter_mut()),
)
{
let offset = log2_freq - log2_center_freq;
let threshold_db = intercept + (slope * offset) + (curve * offset * offset);
let knee_start_db =
threshold_db - (params.compressors.upwards.knee_width_db.value / 2.0);
let knee_end_db =
threshold_db + (params.compressors.upwards.knee_width_db.value / 2.0);
*threshold = util::db_to_gain(threshold_db).max(f32::EPSILON);
*knee_start = util::db_to_gain(knee_start_db).max(f32::EPSILON);
*knee_end = util::db_to_gain(knee_end_db).max(f32::EPSILON);
}
}
if self
.should_update_downwards_ratios
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
// If the high-frequency rolloff is enabled then higher frequency bins will have their
// ratios reduced to reduce harshness. This follows the octave scale.
let target_ratio_recip = params.compressors.downwards.ratio.value.recip();
if downwards_high_freq_ratio_rolloff == 0.0 {
self.downwards_ratio_recips.fill(target_ratio_recip);
} else {
for (log2_freq, ratio) in self
.log2_freqs
.iter()
.zip(self.downwards_ratio_recips.iter_mut())
{
let octave_fraction = log2_freq / log2_nyquist_freq;
let rolloff_t = octave_fraction * downwards_high_freq_ratio_rolloff;
// If the octave fraction times the rolloff amount is high, then this should get
// closer to `high_freq_ratio_rolloff` (which is in [0, 1]).
*ratio = (target_ratio_recip * (1.0 - rolloff_t)) + rolloff_t;
}
}
}
if self
.should_update_upwards_ratios
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
let target_ratio_recip = params.compressors.upwards.ratio.value.recip();
if upwards_high_freq_ratio_rolloff == 0.0 {
self.upwards_ratio_recips.fill(target_ratio_recip);
} else {
for (log2_freq, ratio) in self
.log2_freqs
.iter()
.zip(self.upwards_ratio_recips.iter_mut())
{
let octave_fraction = log2_freq / log2_nyquist_freq;
let rolloff_t = octave_fraction * upwards_high_freq_ratio_rolloff;
*ratio = (target_ratio_recip * (1.0 - rolloff_t)) + rolloff_t;
}
}
}
}
}
/// Get the knee scaling factor for converting a linear `[0, 1]` knee range into the correct curve
/// for the soft knee. This is used to blend between compression at the knee start to compression at
/// the actual threshold. For upwards compression this needs an additional square root.
fn compute_knee_scaling_factor(downwards_knee_width_db: f32) -> f32 {
((downwards_knee_width_db * 2.0) + 2.0).log2() - 1.0
}
/// Get the compression scaling factor for downwards compression with the supplied parameters. The
/// input signal can be multiplied by this factor to get the compressed output signal. All
/// parameters are linear gain values.
fn compress_downwards(
envelope: f32,
threshold: f32,
ratio_recip: f32,
knee_start: f32,
knee_end: f32,
knee_scaling_factor: f32,
) -> f32 {
// The soft-knee option will fade in the compression curve when reaching the knee
// start until it mtaches the hard-knee curve at the knee-end
if envelope >= knee_end {
// Because we're working in the linear domain, we care about the ratio between
// the threshold and the envelope's current value. And log-space division
// becomes linear-space exponentiation by the reciprocal, or taking the nth
// root.
let threshold_ratio = envelope / threshold;
threshold_ratio.powf(ratio_recip) / threshold_ratio
} else if envelope >= knee_start {
// When the knee width is set to 0 dB, `downwards_knee_start ==
// downwards_knee_end` and this branch is never hit
let linear_knee_width = knee_end - knee_start;
let raw_knee_t = (envelope - knee_start) / linear_knee_width;
nih_debug_assert!((0.0..=1.0).contains(&raw_knee_t));
// TODO: Apart from a small discontinuety in the derivative/slope at the start
// of the knee this equation does exactly what you'd expect it to, but it
// feels a bit weird. Should probably look for a cleaner way to calculate
// this soft knee in linear-space at some point.
let knee_t = (1.0 - raw_knee_t).powf(knee_scaling_factor);
nih_debug_assert!((0.0..=1.0).contains(&knee_t));
// We'll linearly interpolate between compression at the knee start and at the
// actual threshold based on `knee_t`
let knee_ratio = envelope / knee_start;
let threshold_ratio = envelope / threshold;
(knee_t * (knee_ratio.powf(ratio_recip) / knee_ratio))
+ ((1.0 - knee_t) * (threshold_ratio.powf(ratio_recip) / threshold_ratio))
} else {
1.0
}
}
/// Get the compression scaling factor for upwards compression with the supplied parameters. The
/// input signal can be multiplied by this factor to get the compressed output signal. All
/// parameters are linear gain values.
fn compress_upwards(
envelope: f32,
threshold: f32,
ratio_recip: f32,
knee_start: f32,
knee_end: f32,
knee_scaling_factor: f32,
) -> f32 {
// This goes the other way around compared to the downwards compression
if envelope <= knee_start {
// Notice how these ratios are reversed here
let threshold_ratio = threshold / envelope;
threshold_ratio / threshold_ratio.powf(ratio_recip)
} else if envelope <= knee_end {
// When the knee width is set to 0 dB, `upwards_knee_start == upwards_knee_end`
// and this branch is never hit
let linear_knee_width = knee_end - knee_start;
let raw_knee_t = (envelope - knee_start) / linear_knee_width;
nih_debug_assert!((0.0..=1.0).contains(&raw_knee_t));
// TODO: Some note the downwards version
let knee_t = (1.0 - raw_knee_t).powf(knee_scaling_factor);
nih_debug_assert!((0.0..=1.0).contains(&knee_t));
// The ratios are again inverted here compared to the downwards version
let knee_ratio = knee_start / envelope;
let threshold_ratio = threshold / envelope;
(knee_t * (knee_ratio / knee_ratio.powf(ratio_recip)))
+ ((1.0 - knee_t) * (threshold_ratio / threshold_ratio.powf(ratio_recip)))
} else {
1.0
}
}