348 lines
14 KiB
Rust
348 lines
14 KiB
Rust
// Puberty Simulator: the next generation in voice change simulation technology
|
|
// Copyright (C) 2022 Robbert van der Helm
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
use fftw::array::AlignedVec;
|
|
use fftw::plan::{C2RPlan, C2RPlan32, R2CPlan, R2CPlan32};
|
|
use fftw::types::{c32, Flag};
|
|
use nih_plug::prelude::*;
|
|
use std::f32;
|
|
use std::pin::Pin;
|
|
|
|
const MIN_WINDOW_ORDER: usize = 6;
|
|
#[allow(dead_code)]
|
|
const MIN_WINDOW_SIZE: usize = 1 << MIN_WINDOW_ORDER; // 64
|
|
const DEFAULT_WINDOW_ORDER: usize = 10;
|
|
#[allow(dead_code)]
|
|
const DEFAULT_WINDOW_SIZE: usize = 1 << DEFAULT_WINDOW_ORDER; // 1024
|
|
const MAX_WINDOW_ORDER: usize = 15;
|
|
const MAX_WINDOW_SIZE: usize = 1 << MAX_WINDOW_ORDER; // 32768
|
|
|
|
const MIN_OVERLAP_ORDER: usize = 1;
|
|
#[allow(dead_code)]
|
|
const MIN_OVERLAP_TIMES: usize = 1 << MIN_OVERLAP_ORDER; // 2
|
|
const DEFAULT_OVERLAP_ORDER: usize = 3;
|
|
#[allow(dead_code)]
|
|
const DEFAULT_OVERLAP_TIMES: usize = 1 << DEFAULT_OVERLAP_ORDER; // 4
|
|
const MAX_OVERLAP_ORDER: usize = 5;
|
|
#[allow(dead_code)]
|
|
const MAX_OVERLAP_TIMES: usize = 1 << MAX_OVERLAP_ORDER; // 32
|
|
|
|
struct PubertySimulator {
|
|
params: Pin<Box<PubertySimulatorParams>>,
|
|
|
|
/// An adapter that performs most of the overlap-add algorithm for us.
|
|
stft: util::StftHelper,
|
|
/// Contains a Hann window function of the current window length, passed to the overlap-add
|
|
/// helper. Allocated with a `MAX_WINDOW_SIZE` initial capacity.
|
|
window_function: Vec<f32>,
|
|
|
|
/// The algorithms for the FFT and IFFT operations, for each supported order so we can switch
|
|
/// between them without replanning or allocations. Initialized during `initialize()`.
|
|
plan_for_order: Option<[Plan; MAX_WINDOW_ORDER - MIN_WINDOW_ORDER + 1]>,
|
|
/// Scratch buffers for computing our FFT. The [`StftHelper`] already contains a buffer for the
|
|
/// real values. This type cannot be resized, so we'll simply take a slice of it with the
|
|
/// correct length instead.
|
|
complex_fft_scratch_buffer: AlignedVec<c32>,
|
|
}
|
|
|
|
/// FFTW uses raw pointers which aren't Send+Sync, so we'll wrap this in a separate struct.
|
|
struct Plan {
|
|
r2c_plan: R2CPlan32,
|
|
c2r_plan: C2RPlan32,
|
|
}
|
|
|
|
unsafe impl Send for Plan {}
|
|
unsafe impl Sync for Plan {}
|
|
|
|
#[derive(Params)]
|
|
struct PubertySimulatorParams {
|
|
/// The pitch change in octaves.
|
|
#[id = "pitch"]
|
|
pitch_octaves: FloatParam,
|
|
|
|
/// The size of the FFT window as a power of two (to prevent invalid inputs).
|
|
#[id = "wndsz"]
|
|
window_size_order: IntParam,
|
|
/// The amount of overlap to use in the overlap-add algorithm as a power of two (again to
|
|
/// prevent invalid inputs).
|
|
#[id = "ovrlap"]
|
|
overlap_times_order: IntParam,
|
|
}
|
|
|
|
impl Default for PubertySimulator {
|
|
fn default() -> Self {
|
|
Self {
|
|
params: Box::pin(PubertySimulatorParams::default()),
|
|
|
|
stft: util::StftHelper::new(2, MAX_WINDOW_SIZE),
|
|
window_function: Vec::with_capacity(MAX_WINDOW_SIZE),
|
|
|
|
plan_for_order: None,
|
|
complex_fft_scratch_buffer: AlignedVec::new(MAX_WINDOW_SIZE / 2 + 1),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for PubertySimulatorParams {
|
|
fn default() -> Self {
|
|
let power_of_two_val2str = formatters::i32_power_of_two();
|
|
let power_of_two_str2val = formatters::from_i32_power_of_two();
|
|
|
|
Self {
|
|
pitch_octaves: FloatParam::new(
|
|
"Pitch",
|
|
-1.0,
|
|
FloatRange::SymmetricalSkewed {
|
|
min: -5.0,
|
|
max: 5.0,
|
|
factor: FloatRange::skew_factor(-2.0),
|
|
center: 0.0,
|
|
},
|
|
)
|
|
// This doesn't need smoothing to prevent zippers because we're already going
|
|
// overlap-add, but sounds kind of slick
|
|
.with_smoother(SmoothingStyle::Linear(100.0))
|
|
.with_unit(" Octaves")
|
|
.with_value_to_string(formatters::f32_rounded(2)),
|
|
|
|
window_size_order: IntParam::new(
|
|
"Window Size",
|
|
DEFAULT_WINDOW_ORDER as i32,
|
|
IntRange::Linear {
|
|
min: MIN_WINDOW_ORDER as i32,
|
|
max: MAX_WINDOW_ORDER as i32,
|
|
},
|
|
)
|
|
.with_value_to_string(power_of_two_val2str.clone())
|
|
.with_string_to_value(power_of_two_str2val.clone()),
|
|
overlap_times_order: IntParam::new(
|
|
"Window Overlap",
|
|
DEFAULT_OVERLAP_ORDER as i32,
|
|
IntRange::Linear {
|
|
min: MIN_OVERLAP_ORDER as i32,
|
|
max: MAX_OVERLAP_ORDER as i32,
|
|
},
|
|
)
|
|
.with_value_to_string(power_of_two_val2str)
|
|
.with_string_to_value(power_of_two_str2val),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Plugin for PubertySimulator {
|
|
const NAME: &'static str = "Puberty Simulator";
|
|
const VENDOR: &'static str = "Robbert van der Helm";
|
|
const URL: &'static str = "https://github.com/robbert-vdh/nih-plug";
|
|
const EMAIL: &'static str = "mail@robbertvanderhelm.nl";
|
|
|
|
const VERSION: &'static str = "0.1.0";
|
|
|
|
const DEFAULT_NUM_INPUTS: u32 = 2;
|
|
const DEFAULT_NUM_OUTPUTS: u32 = 2;
|
|
|
|
fn params(&self) -> Pin<&dyn Params> {
|
|
self.params.as_ref()
|
|
}
|
|
|
|
fn accepts_bus_config(&self, config: &BusConfig) -> bool {
|
|
// We'll only do stereo for simplicity's sake
|
|
config.num_input_channels == config.num_output_channels && config.num_input_channels == 2
|
|
}
|
|
|
|
fn initialize(
|
|
&mut self,
|
|
_bus_config: &BusConfig,
|
|
_buffer_config: &BufferConfig,
|
|
context: &mut impl ProcessContext,
|
|
) -> bool {
|
|
if self.plan_for_order.is_none() {
|
|
let plan_for_order: Vec<Plan> = (MIN_WINDOW_ORDER..=MAX_WINDOW_ORDER)
|
|
// `Flag::MEASURE` is pretty slow above 1024 which hurts initialization time.
|
|
// `Flag::ESTIMATE` does not seem to hurt performance much at reasonable orders, so
|
|
// that's good enough for now. An alternative would be to replan on a worker thread,
|
|
// but this makes switching between window sizes a bit cleaner.
|
|
.map(|order| Plan {
|
|
r2c_plan: R2CPlan32::aligned(
|
|
&[1 << order],
|
|
Flag::ESTIMATE | Flag::DESTROYINPUT,
|
|
)
|
|
.unwrap(),
|
|
c2r_plan: C2RPlan32::aligned(
|
|
&[1 << order],
|
|
Flag::ESTIMATE | Flag::DESTROYINPUT,
|
|
)
|
|
.unwrap(),
|
|
})
|
|
.collect();
|
|
self.plan_for_order = Some(
|
|
plan_for_order
|
|
.try_into()
|
|
.unwrap_or_else(|_| panic!("Mismatched plan orders")),
|
|
);
|
|
}
|
|
|
|
// Normally we'd also initialize the STFT helper for the correct channel count here, but we
|
|
// only do stereo so that's not necessary
|
|
let window_size = self.window_size();
|
|
if self.window_function.len() != window_size {
|
|
self.resize_for_window(window_size);
|
|
|
|
context.set_latency_samples(self.stft.latency_samples());
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
fn reset(&mut self) {
|
|
// This zeroes out the buffers
|
|
self.stft.set_block_size(self.window_size());
|
|
}
|
|
|
|
fn process(&mut self, buffer: &mut Buffer, context: &mut impl ProcessContext) -> ProcessStatus {
|
|
// Compensate for the window function, the overlap, and the extra gain introduced by the
|
|
// IDFT operation
|
|
let window_size = self.window_size();
|
|
let overlap_times = self.overlap_times();
|
|
let sample_rate = context.transport().sample_rate;
|
|
let gain_compensation: f32 = 1.0 / (overlap_times as f32).log2() / window_size as f32;
|
|
|
|
// If the window size has changed since the last process call, reset the buffers and chance
|
|
// our latency. All of these buffers already have enough capacity
|
|
if self.window_function.len() != window_size {
|
|
self.resize_for_window(window_size);
|
|
|
|
context.set_latency_samples(self.stft.latency_samples());
|
|
}
|
|
|
|
// Since this type cannot be resized, we'll simply slice the full buffer instead
|
|
let complex_fft_scratch_buffer =
|
|
&mut self.complex_fft_scratch_buffer.as_slice_mut()[..window_size / 2 + 1];
|
|
// These plans have already been made during initialization we can switch between versions
|
|
// without reallocating
|
|
let fft_plan = &mut self.plan_for_order.as_mut().unwrap()
|
|
[self.params.window_size_order.value as usize - MIN_WINDOW_ORDER];
|
|
|
|
let mut smoothed_pitch_value = 0.0;
|
|
self.stft.process_overlap_add(
|
|
buffer,
|
|
&self.window_function,
|
|
overlap_times,
|
|
|channel_idx, real_fft_scratch_buffer| {
|
|
// This loop runs whenever there's a block ready, so we can't easily do any post- or
|
|
// pre-processing without muddying up the interface. But if this is channel 0, then
|
|
// we're dealing with a new block. We'll use this for our parameter smoothing.
|
|
if channel_idx == 0 {
|
|
smoothed_pitch_value = self
|
|
.params
|
|
.pitch_octaves
|
|
.smoothed
|
|
.next_step((window_size / overlap_times) as u32);
|
|
}
|
|
// Negated because pitching down should cause us to take values from higher frequency bins
|
|
let frequency_multiplier = 2.0f32.powf(-smoothed_pitch_value);
|
|
|
|
// Forward FFT, the helper has already applied window function
|
|
fft_plan
|
|
.r2c_plan
|
|
.r2c(real_fft_scratch_buffer, complex_fft_scratch_buffer)
|
|
.unwrap();
|
|
|
|
// This simply interpolates between the complex sinusoids from the frequency bins
|
|
// for this bin's frequency scaled by the octave pitch multiplies. The iteration
|
|
// order dependson the pitch shifting direction since we're doing it in place.
|
|
let num_bins = complex_fft_scratch_buffer.len();
|
|
let mut process_bin = |bin_idx| {
|
|
let frequency = bin_idx as f32 / window_size as f32 * sample_rate;
|
|
let target_frequency = frequency * frequency_multiplier;
|
|
|
|
// Simple linear interpolation
|
|
let target_bin = target_frequency / sample_rate * window_size as f32;
|
|
let target_bin_low = target_bin.floor() as usize;
|
|
let target_bin_high = target_bin.ceil() as usize;
|
|
let target_low_t = target_bin % 1.0;
|
|
let target_high_t = 1.0 - target_low_t;
|
|
let target_low = complex_fft_scratch_buffer
|
|
.get(target_bin_low)
|
|
.copied()
|
|
.unwrap_or_default();
|
|
let target_high = complex_fft_scratch_buffer
|
|
.get(target_bin_high)
|
|
.copied()
|
|
.unwrap_or_default();
|
|
|
|
complex_fft_scratch_buffer[bin_idx] = (target_low * target_low_t
|
|
+ target_high * target_high_t)
|
|
* 3.0 // Random extra gain, not sure
|
|
* gain_compensation;
|
|
};
|
|
|
|
if frequency_multiplier >= 1.0 {
|
|
for bin_idx in 0..num_bins {
|
|
process_bin(bin_idx);
|
|
}
|
|
} else {
|
|
for bin_idx in (0..num_bins).rev() {
|
|
process_bin(bin_idx);
|
|
}
|
|
}
|
|
|
|
// Inverse FFT back into the scratch buffer. This will be added to a ring buffer
|
|
// which gets written back to the host at a one block delay.
|
|
fft_plan
|
|
.c2r_plan
|
|
.c2r(complex_fft_scratch_buffer, real_fft_scratch_buffer)
|
|
.unwrap();
|
|
},
|
|
);
|
|
|
|
ProcessStatus::Normal
|
|
}
|
|
}
|
|
|
|
impl PubertySimulator {
|
|
fn window_size(&self) -> usize {
|
|
1 << self.params.window_size_order.value as usize
|
|
}
|
|
|
|
fn overlap_times(&self) -> usize {
|
|
1 << self.params.overlap_times_order.value as usize
|
|
}
|
|
|
|
/// `window_size` should not exceed `MAX_WINDOW_SIZE` or this will allocate.
|
|
fn resize_for_window(&mut self, window_size: usize) {
|
|
// The FFT algorithms for this window size have already been planned
|
|
self.stft.set_block_size(window_size);
|
|
self.window_function.resize(window_size, 0.0);
|
|
util::window::hann_in_place(&mut self.window_function);
|
|
}
|
|
}
|
|
|
|
impl ClapPlugin for PubertySimulator {
|
|
const CLAP_ID: &'static str = "nl.robbertvanderhelm.puberty-simulator";
|
|
const CLAP_DESCRIPTION: &'static str = "Simulates a pitched down cracking voice";
|
|
const CLAP_FEATURES: &'static [&'static str] =
|
|
&["audio_effect", "stereo", "glitch", "pitch_shifter"];
|
|
const CLAP_MANUAL_URL: &'static str = Self::URL;
|
|
const CLAP_SUPPORT_URL: &'static str = Self::URL;
|
|
}
|
|
|
|
impl Vst3Plugin for PubertySimulator {
|
|
const VST3_CLASS_ID: [u8; 16] = *b"PubertySim..RvdH";
|
|
const VST3_CATEGORIES: &'static str = "Fx|Pitch Shift";
|
|
}
|
|
|
|
nih_export_clap!(PubertySimulator);
|
|
nih_export_vst3!(PubertySimulator);
|