1
0
Fork 0
nih-plug/src/lib.rs
Robbert van der Helm 68cf0455ee Rework and optimize block smoothing API
You now need to bring your own buffer instead of the smoother having a
built in vector you would need to pre-allocate. This makes the API
simpler, and also much more flexible when doing polyphonic modulation.

In addition, the new API is much more efficient when there is no
smoothing going on anymore.
2022-07-06 14:29:29 +02:00

110 lines
7.4 KiB
Rust

//! Documentation is still a work in progress. The best way to learn right now is to browse through
//! the examples and to browse through these docs. There is no full guide yet, but here are some
//! pointers to get started:
//!
//! - All useful functionality is exported through the [`prelude`] module. Add
//! `use nih_plug::prelude::*;` to the top of your `lib.rs` file to get started.
//! - Make sure to check out the macros from the [`debug`] module. These should be used instead of,
//! `println!()`/`eprint!()`, `dbg!()` and similar macros, and they are re-exported from the
//! prelude. NIH-plug sets up a flexible logger for you that all of these functions will output
//! to. By default, the output is logged to STDERR unless you're running Windows and a Windows
//! debugger is attached, in which case the output is logged to the debug console instead. The
//! `NIH_LOG` environment variable controls whether output is logged to STDERR, the Windows debug
//! console, or to a file. Check the [`nih_log!()`] macro for more information.
//! - The abovementioned debug module also contains non-fatal debug-assertions macros that are only
//! evaluated during debug builds. The framework uses these all over the place to check for
//! invariants, so it's important to test your plugins using debug builds while developing.
//! - Check out the features list in NIH-plug's `Cargo.toml` file for optional features you can
//! enable. This includes things like SIMD support for the buffer adapters and panicking on
//! allocations during DSP code in debug mode.
//!
//! - An NIH-plug plugin consists of an implementation of the [`Plugin`][prelude::Plugin] trait and
//! a call to [`nih_export_vst3!()`] and/or [`nih_export_clap!()`] in your `lib.rs` file to expose
//! the plugin functionality. Some of these traits will require you to implement an additional
//! trait containing API-specific information for the plugin.
//! - NIH-plug comes with a bundler that creates plugin bundles for you based on the exported plugin
//! formats and the operating system and architecture you're compiling for. Check out the
//! readme for
//! [`nih_plug_xtask`](https://github.com/robbert-vdh/nih-plug/tree/master/nih_plug_xtask) for
//! instructions on how to use this within your own project.
//! - It's also possible to export a standalone application from a plugin using the
//! [`nih_export_standalone()`][prelude::nih_export_standalone()] function. Check that function's
//! documentation to learn how to do this. This requires enabling the `standalone` crate feature.
//! - Everything is described in more detail on the [`Plugin`][prelude::Plugin] trait and everything
//! linked from there, but a plugin's general lifecycle involves the following function calls.
//!
//! 1. When the host loads the plugin, your plugin object will be instantiated using its
//! [`Default`] implementation. The plugin should refrain from performing expensive
//! calculations or IO at this point.
//! 2. The host or the plugin wrapper will call
//! [`Plugin::accepts_bus_config()`][prelude::Plugin::accepts_bus_config()] several times with
//! different IO configuratinos to poll whether your plugin supports certain IO configurations.
//! The plugin should not do any work at this point and just reply with boolean whether it
//! supports the configuration or not.
//! 3. After that, [`Plugin::initialize()`][prelude::Plugin::initialize()] will be called with the
//! the selected IO configuration and the audio buffer settings. Here you should allocate any
//! data structures you need or precompute data that depends on the sample rate or maximum
//! buffer size. This is the only place where you can safely allocate memory.
//! 4. The [`Plugin::reset()`][prelude::Plugin::reset()] function is always called immediately
//! after `initialize()`. This is where you should clear out coefficients, envelopes, phases,
//! and other runtime data. The reason for this split is that this function may be called at
//! any time by the host from the audio thread, and it thus needs to be realtime safe.
//!
//! Whenever a preset is loaded, both of these functions will be called again.
//! 5. After that the [`Plugin::process()`][prelude::Plugin::process()] function will be called
//! repeatedly until the plugin is deactivated. Here the plugin receives a
//! [`Buffer`][prelude::Buffer] object that contains the input audio (if the plugin has inputs)
//! which the plugin should overwrite with output audio. Check the documentation on the
//! `Buffer` object for all of the ways you can use this API. You can access note events,
//! transport data, and more through the [`ProcessContext`][prelude::ProcessContext] that's
//! also passed to the process function.
//! 6. [`Plugin::deactivate()`][prelude::Plugin::deactivate()] is called from the when the plugin
//! gets deactivated. You probably don't need to do anything here, but you could deallocate or
//! clean up resources here.
//!
//! - Plugin parameters are managed automatically by creating a struct deriving the
//! [`Params`][prelude::Params] trait and returning a handle to it from the
//! [`Plugin::params()`][prelude::Plugin::params()] function. Any
//! [`FloatParam`][prelude::FloatParam], [`IntParam`][prelude::IntParam],
//! [`BoolParam`][prelude::BoolParam] or [`EnumParam`][prelude::EnumParam] fields on that struct
//! will automatically be registered as a parameter if they have an `#[id = "foobar"]` attribute.
//! The string `"foobar"` here uniquely identifies the parameter, making it possible to reorder
//! and rename parameters as long as this string stays constant. You can also store persistent
//! non-parameter data and other parameter objects in a `Params` struct. Check out the trait's
//! documentation for more details, and also be sure to take a look at the [example
//! plugins](https://github.com/robbert-vdh/nih-plug/tree/master/plugins).
//! - After calling `.with_smoother()` during an integer or floating point parameter's creation,
//! you can use `param.smoothed` to access smoothed values for that parameter. Be sure to check
//! out the [`Smoother`][prelude::Smoother] API for more details.
//!
//! There's a whole lot more to discuss, but once you understand the above you should be able to
//! figure out the rest by reading through the examples and the API documetnation. Good luck!
#![cfg_attr(feature = "docs", feature(doc_auto_cfg))]
#![cfg_attr(feature = "simd", feature(portable_simd))]
// Around Rust 1.64 Clippy started throwing this for all instances of `dyn Fn(...) -> ... + Send +
// Sync`. Creating type aliases for all of these callbacks probably won't make things easier to read.
#![allow(clippy::type_complexity)]
// These macros are also in the crate root and in the prelude, but having the module itself be pub
// as well makes it easy to import _just_ the macros without using `#[macro_use] extern crate nih_plug;`
#[macro_use]
pub mod debug;
/// A re-export of the `log` crate for use in the debug macros. This should not be used directly.
pub use log;
/// Everything you'll need to use NIH-plug. Import this with `use nih_plug::prelude::*;`.
pub mod prelude;
// These modules have also been re-exported in the prelude.
pub mod formatters;
pub mod util;
pub mod buffer;
pub mod context;
mod event_loop;
pub mod midi;
pub mod param;
pub mod plugin;
pub mod wrapper;